Browse Results What Format Should I Choose?

Showing 1 through 3 of 3 results

Bandit Algorithms for Website Optimization

by John Myles White

When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You'll quickly learn the benefits of several simple algorithms--including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms--by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing--and recognize when it's better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials

Machine Learning for Email

by John Myles White Drew Conway

If you're an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You'll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You'll get clear examples for analyzing sample data and writing machine learning programs with R. Mine email content with R functions, using a collection of sample files Analyze the data and use the results to write a Bayesian spam classifier Rank email by importance, using factors such as thread activity Use your email ranking analysis to write a priority inbox program Test your classifier and priority inbox with a separate email sample set

Machine Learning for Hackers

by John Myles White Drew Conway

If you're an experienced programmer interested in crunching data, this book will get you started with machine learning--a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a "whom to follow" recommendation system from Twitter data

Showing 1 through 3 of 3 results


Select your format based upon: 1) how you want to read your book, and 2) compatibility with your reading tool. To learn more about using Bookshare with your device, visit the Help Center.

Here is an overview of the specialized formats that Bookshare offers its members with links that go to the Help Center for more information.

  • Bookshare Web Reader - a customized reading tool for Bookshare members offering all the features of DAISY with a single click of the "Read Now" link.
  • DAISY (Digital Accessible Information System) - a digital book file format. DAISY books from Bookshare are DAISY 3.0 text files that work with just about every type of access technology that reads text. Books that contain images will have the download option of ���DAISY Text with Images���.
  • BRF (Braille Refreshable Format) - digital Braille for use with refreshable Braille devices and Braille embossers.
  • MP3 (Mpeg audio layer 3) - Provides audio only with no text. These books are created with a text-to-speech engine and spoken by Kendra, a high quality synthetic voice from Ivona. Any device that supports MP3 playback is compatible.
  • DAISY Audio - Similar to the Daisy 3.0 option above; however, this option uses MP3 files created with our text-to-speech engine that utilizes Ivonas Kendra voice. This format will work with Daisy Audio compatible players such as Victor Reader Stream and Read2Go.