Helix Structures in Quantum Cohomology of Fano Varieties (Lecture Notes in Mathematics #2356)
By: and and
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- This research monograph provides a comprehensive study of a conjecture initially proposed by the second author at the 1998 International Congress of Mathematicians (ICM). This conjecture asserts the equivalence, for a Fano variety, between the semisimplicity condition of its quantum cohomology and the existence of full exceptional collections in its derived category of coherent sheaves. Additionally, in its quantitative form, the conjecture specifies an explicit relation between the monodromy data of the quantum cohomology, characteristic classes, and exceptional collections. A refined version of the conjecture is introduced, with a particular focus on the central connection matrix, and a precise link is established between this refined conjecture and Γ-conjecture II, as proposed by S. Galkin, V. Golyshev, and H. Iritani. By performing explicit calculations of the monodromy data, the validity of the refined conjecture for all complex Grassmannians G(r,k) is demonstrated. Intended for students and researchers, the book serves as an introduction to quantum cohomology and its isomonodromic approach, along with its algebraic counterpart in the derived category of coherent sheaves.
- Copyright:
- 2024
Book Details
- Book Quality:
- Publisher Quality
- ISBN-13:
- 9783031690679
- Related ISBNs:
- 9783031690662
- Publisher:
- Springer Nature Switzerland
- Date of Addition:
- 11/29/24
- Copyrighted By:
- The Editor
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Earth Sciences, Mathematics and Statistics
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.
Reviews
Other Books
- by Giordano Cotti
- by Boris A. Dubrovin
- by Davide Guzzetti
- in Nonfiction
- in Earth Sciences
- in Mathematics and Statistics