Scaling Machine Learning with Spark: Distributed ML with MLlib, TensorFlow, and PyTorch (1)
By:
Sign Up Now!
Already a Member? Log In
You must be logged into Bookshare to access this title.
Learn about membership options,
or view our freely available titles.
- Synopsis
- Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better. Scaling Machine Learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology. You will: Explore machine learning, including distributed computing concepts and terminologyManage the ML lifecycle with MLflowIngest data and perform basic preprocessing with SparkExplore feature engineering, and use Spark to extract featuresTrain a model with MLlib and build a pipeline to reproduce itBuild a data system to combine the power of Spark with deep learningGet a step-by-step example of working with distributed TensorFlowUse PyTorch to scale machine learning and its internal architecture
- Copyright:
- 2023
Book Details
- Book Quality:
- Publisher Quality
- Book Size:
- 294 Pages
- ISBN-13:
- 9781098106775
- Related ISBNs:
- 9781098106829, 9781098106799
- Publisher:
- O'Reilly Media
- Date of Addition:
- 02/06/25
- Copyrighted By:
- Adi Polak.
- Adult content:
- No
- Language:
- English
- Has Image Descriptions:
- No
- Categories:
- Nonfiction, Computers and Internet
- Submitted By:
- Bookshare Staff
- Usage Restrictions:
- This is a copyrighted book.