- Table View
- List View
Machine Learning and the Internet of Things in Solar Power Generation (Smart Engineering Systems: Design and Applications)
by Jude Hemanth Suman Lata Tripathi Prabha Umapathy Abinaya Inbamani Shelej KheraThe book investigates various MPPT algorithms, and the optimization of solar energy using machine learning and deep learning. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in diverse engineering domains including electrical, electronics and communication, computer, and environmental.This book: Discusses data acquisition by the internet of things for real-time monitoring of solar cells. Covers artificial neural network techniques, solar collector optimization, and artificial neural network applications in solar heaters, and solar stills. Details solar analytics, smart centralized control centers, integration of microgrids, and data mining on solar data. Highlights the concept of asset performance improvement, effective forecasting for energy production, and Low-power wide-area network applications. Elaborates solar cell design principles, the equivalent circuits of single and two diode models, measuring idealist factors, and importance of series and shunt resistances. The text elaborates solar cell design principles, the equivalent circuit of single diode model, the equivalent circuit of two diode model, measuring idealist factor, and importance of series and shunt resistances. It further discusses perturb and observe technique, modified P&O method, incremental conductance method, sliding control method, genetic algorithms, and neuro-fuzzy methodologies. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in diverse engineering domains including electrical, electronics and communication, computer, and environmental.
Machine Learning and the Internet of Things in Education: Models and Applications (Studies in Computational Intelligence #1115)
by John Bush Idoko Rahib AbiyevThis book is designed to provide rich research hub for researchers, teachers, and students to ease research hassle/challenges. The book is rich and comprehensive enough to provide answers to frequently asked research questions because the content of the book touches several disciplines cutting across computing, engineering, medicine, education, and sciences in general. The rich multidisciplinary contents of the book promise to leave all users satisfied. The valuable features in the book include but not limited to: demonstration of mathematical expressions for implementation of machine learning models, integration of learning techniques, and projection of future AI and IoT technologies. These technologies will enable systems to be simulative, predictive, and self-operating smart systems. The primary audience of the book include but not limited to researchers, teachers, and postgraduate and undergraduate students in computing, engineering, medicine, education, and science fields.
Machine Learning and its Applications
by Peter WlodarczakIn recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Machine Learning and Systems Engineering
by Sio-Iong Ao Burghard B. Rieger Mahyar AmouzegarA large international conference on Advances in Machine Learning and Systems Engineering was held in UC Berkeley, California, USA, October 20-22, 2009, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2009). Machine Learning and Systems Engineering contains forty-six revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Machine Learning and Systems Engineering offers the state of the art of tremendous advances in machine learning and systems engineering and also serves as an excellent reference text for researchers and graduate students, working on machine learning and systems engineering.
Machine Learning and Soft Computing: 9th International Conference, ICMLSC 2025, Tokyo, Japan, January 24–26, 2025, Revised Selected Papers, Part II (Communications in Computer and Information Science #2488)
by Letian HuangThis two part-volume CCIS constitutes the refereed proceedings of 9th International Conference, ICMLSC 2025, in Tokyo, Japan in January 24–26, 2025. The 39 full papers and 13 short papers included in this book were carefully reviewed and selected from 121 submissions. They follow the topical sections as below: Part I : Multimodal Data Analysis and Model Optimization; Basic Theories of Machine Learning and Emerging Application Technologies; and Intelligent Recommendation System Design and Privacy Security. Part II : Deep Learning Models and High-performance Computing; Data-driven Complex System Modeling and Intelligent Optimization Algorithms; and Image Analysis and Processing Methods based on AI.
Machine Learning and Soft Computing: 9th International Conference, ICMLSC 2025, Tokyo, Japan, January 24–26, 2025, Revised Selected Papers, Part I (Communications in Computer and Information Science #2487)
by Letian HuangThis two part-volume CCIS constitutes the refereed proceedings of 9th International Conference, ICMLSC 2025, in Tokyo, Japan in January 24–26, 2025. The 39 full papers and 13 short papers included in this book were carefully reviewed and selected from 121 submissions. They follow the topical sections as below: Part I : Multimodal Data Analysis and Model Optimization; Basic Theories of Machine Learning and Emerging Application Technologies; and Intelligent Recommendation System Design and Privacy Security. Part II : Deep Learning Models and High-performance Computing; Data-driven Complex System Modeling and Intelligent Optimization Algorithms; and Image Analysis and Processing Methods based on AI.
Machine Learning and Security: Protecting Systems with Data and Algorithms
by David Freeman Clarence ChioCan machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis.Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike.Learn how machine learning has contributed to the success of modern spam filtersQuickly detect anomalies, including breaches, fraud, and impending system failureConduct malware analysis by extracting useful information from computer binariesUncover attackers within the network by finding patterns inside datasetsExamine how attackers exploit consumer-facing websites and app functionalityTranslate your machine learning algorithms from the lab to productionUnderstand the threat attackers pose to machine learning solutions
Machine Learning and Python for Human Behavior, Emotion, and Health Status Analysis
by Md Zia UddinThis book is a practical guide for individuals interested in exploring and implementing smart home applications using Python. Comprising six chapters enriched with hands-on codes, it seamlessly navigates from foundational concepts to cutting-edge technologies, balancing theoretical insights and practical coding experiences. In short, it is a gateway to the dynamic intersection of Python programming, smart home technology, and advanced machine learning applications, making it an invaluable resource for those eager to explore this rapidly growing field.Key Features: Throughout the book, practicality takes precedence, with hands-on coding examples accompanying each concept to facilitate an interactive learning journey Striking a harmonious balance between theoretical foundations and practical coding, the book caters to a diverse audience, including smart home enthusiasts and researchers The content prioritizes real-world applications, ensuring readers can immediately apply the knowledge gained to enhance smart home functionalities Covering Python basics, feature extraction, deep learning, and XAI, the book provides a comprehensive guide, offering an overall understanding of smart home applications
Machine Learning and Probabilistic Graphical Models for Decision Support Systems
by Kim Phuc TranThis book presents recent advancements in research, a review of new methods and techniques, and applications in decision support systems (DSS) with Machine Learning and Probabilistic Graphical Models, which are very effective techniques in gaining knowledge from Big Data and in interpreting decisions. It explores Bayesian network learning, Control Chart, Reinforcement Learning for multicriteria DSS, Anomaly Detection in Smart Manufacturing with Federated Learning, DSS in healthcare, DSS for supply chain management, etc. Researchers and practitioners alike will benefit from this book to enhance the understanding of machine learning, Probabilistic Graphical Models, and their uses in DSS in the context of decision making with uncertainty. The real-world case studies in various fields with guidance and recommendations for the practical applications of these studies are introduced in each chapter.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part V (Communications in Computer and Information Science #2137)
by Fabrizio Silvestri Rosa MeoThe five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part IV (Communications in Computer and Information Science #2136)
by Fabrizio Silvestri Rosa MeoThe five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part III (Communications in Computer and Information Science #2135)
by Fabrizio Silvestri Rosa MeoThe five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part II (Communications in Computer and Information Science #2134)
by Fabrizio Silvestri Rosa MeoThe five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Revised Selected Papers, Part I (Communications in Computer and Information Science #2133)
by Fabrizio Silvestri Rosa MeoThe five-volume set CCIS 2133-2137 constitutes the refereed proceedings of the workshops held in conjunction with the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, during September 18-22, 2023. The 200 full papers presented in these proceedings were carefully reviewed and selected from 515 submissions. The papers have been organized in the following tracks: Part I: Advances in Interpretable Machine Learning and Artificial Intelligence -- Joint Workshop and Tutorial; BIAS 2023 - 3rd Workshop on Bias and Fairness in AI; Biased Data in Conversational Agents; Explainable Artificial Intelligence: From Static to Dynamic; ML, Law and Society; Part II: RKDE 2023: 1st International Tutorial and Workshop on Responsible Knowledge Discovery in Education; SoGood 2023 – 8th Workshop on Data Science for Social Good; Towards Hybrid Human-Machine Learning and Decision Making (HLDM); Uncertainty meets explainability in machine learning; Workshop: Deep Learning and Multimedia Forensics. Combating fake media and misinformation; Part III: XAI-TS: Explainable AI for Time Series: Advances and Applications; XKDD 2023: 5th International Workshop on eXplainable Knowledge Discovery in Data Mining; Deep Learning for Sustainable Precision Agriculture; Knowledge Guided Machine Learning; MACLEAN: MAChine Learning for EArth ObservatioN; MLG: Mining and Learning with Graphs; Neuro Explicit AI and Expert Informed ML for Engineering and Physical Sciences; New Frontiers in Mining Complex Patterns; Part IV: PharML, Machine Learning for Pharma and Healthcare Applications; Simplification, Compression, Efficiency and Frugality for Artificial intelligence; Workshop on Uplift Modeling and Causal Machine Learning for Operational Decision Making; 6th Workshop on AI in Aging, Rehabilitation and Intelligent Assisted Living (ARIAL); Adapting to Change: Reliable Multimodal Learning Across Domains; AI4M: AI for Manufacturing; Part V: Challenges and Opportunities of Large Language Models in Real-World Machine Learning Applications; Deep learning meets Neuromorphic Hardware; Discovery challenge; ITEM: IoT, Edge, and Mobile for Embedded Machine Learning; LIMBO - LearnIng and Mining for BlOckchains; Machine Learning for Cybersecurity (MLCS 2023); MIDAS - The 8th Workshop on MIning DAta for financial applicationS; Workshop on Advancements in Federated Learning.
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part II (Communications in Computer and Information Science #1525)
by Christopher Buckley Min Zhou Lee Cooper Rita Ribeiro Donato Malerba Bodo Rosenhahn João Gama Riccardo Guidotti Anna Monreale Pedro M. Ferreira Meng Sun Philippe Fournier-Viger Ricard Gavaldà Michael Kamp Yamuna Krishnamurthy Valerio Bitetta Ilaria Bordino Andrea Ferretti Francesco Gullo Christine Largeron Massimiliano Ruocco Giovanni Ponti Tim Verbelen Pablo Lanillos Holger Fröning Franz Pernkopf Gregor Schiele Michaela Blott Lorenzo Severini Przemyslaw Biecek Irena Koprinska Linara Adilova Ibéria Medeiros Eirini Ntoutsi Salvatore Rinzivillo Jefrey Lijffijt Adrien Bibal Tassadit Bouadi Benoît Frénay Luis Galárraga José Oramas Bo Kang Tiphaine Viard Pascal Welke Erlend Aune Claudio Gallicchio Günther Schindler Mykola Pechenizkiy Daniela Cialfi Maxwell Ramstead Giuseppina Andresini M. Saqib Nawaz Sebastian Ventura Naghmeh Ghazaleh Jonas Richiardi Damian Roqueiro Diego Saldana Miranda Konstantinos Sechidis Guilherme GraçaThis two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
Machine Learning and Principles and Practice of Knowledge Discovery in Databases: International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I (Communications in Computer and Information Science #1524)
by Christopher Buckley Min Zhou Lee Cooper Rita Ribeiro Donato Malerba Bodo Rosenhahn João Gama Riccardo Guidotti Anna Monreale Pedro M. Ferreira Meng Sun Philippe Fournier-Viger Ricard Gavaldà Michael Kamp Yamuna Krishnamurthy Valerio Bitetta Ilaria Bordino Andrea Ferretti Francesco Gullo Christine Largeron Massimiliano Ruocco Giovanni Ponti Tim Verbelen Pablo Lanillos Holger Fröning Franz Pernkopf Gregor Schiele Michaela Blott Lorenzo Severini Przemyslaw Biecek Irena Koprinska Linara Adilova Ibéria Medeiros Eirini Ntoutsi Salvatore Rinzivillo Jefrey Lijffijt Adrien Bibal Tassadit Bouadi Benoît Frénay Luis Galárraga José Oramas Bo Kang Tiphaine Viard Pascal Welke Erlend Aune Claudio Gallicchio Günther Schindler Mykola Pechenizkiy Daniela Cialfi Maxwell Ramstead Giuseppina Andresini M. Saqib Nawaz Sebastian Ventura Naghmeh Ghazaleh Jonas Richiardi Damian Roqueiro Diego Saldana Miranda Konstantinos Sechidis Guilherme GraçaThis two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021)
Machine Learning and Other Soft Computing Techniques: Biomedical and Related Applications (Studies in Systems, Decision and Control #543)
by Vladik Kreinovich Nguyen Hoang Phuong Nguyen Thi Huyen ChauThis book contains applications to various health-related problems, from designing and maintaining a proper diet to enhancing hygiene to analysis of mammograms and left-right brain activity to treating diseases such as diabetes and drug addictions. Health issues are very important. So naturally whatever new data processing technique appears, researchers try to apply it to health issues as well. From this viewpoint, Artificial Intelligence (AI) and Computational Intelligence (CI) techniques are no exception: they have been successfully applied to medicine, and more promising applications are on the way. Applications of AI and CI techniques to health issues are the main focus of this book. Health issues are also very delicate, because human bodies are complex organisms. No matter how interesting and promising are new ideas and new techniques, there is always a possibility of unexpected side effects. Because of this, we cannot apply untested methods to patients, and we first need to test these methods on other less critical applications. Several book chapters describe such applications—whose success paves the way for these methods to be used in biomedical situations. These applications range from human/face detection to predicting student success to predicting election results to explaining the observed intensity of space light. We hope that this book helps practitioners and researchers to learn more about computational intelligence techniques and their biomedical applications—and to further develop this important research direction.
Machine Learning and Optimization for Engineering Design (Engineering Optimization: Methods and Applications)
by Apoorva S. Shastri Mangal Singh Kailash ShawThis book aims to provide a collection of state-of-the-art scientific and technical research papers related to machine learning-based algorithms in the field of optimization and engineering design. The theoretical and practical development for numerous engineering applications such as smart homes, ICT-based irrigation systems, academic success prediction, future agro-industry for crop production, disease classification in plants, dental problems and solutions, loan eligibility processing, etc., and their implementation with several case studies and literature reviews are included as self-contained chapters. Additionally, the book intends to highlight the importance of study and effectiveness in addressing the time and space complexity of problems and enhancing accuracy, analysis, and validations for different practical applications by acknowledging the state-of-the-art literature survey. The book targets a larger audience by exploring multidisciplinary research directions such as computer vision, machine learning, artificial intelligence, modified/newly developed machine learning algorithms, etc., to enhance engineering design applications for society. State-of-the-art research work with illustrations and exercises along with pseudo-code has been provided here.
Machine Learning and Optimization Models for Optimization in Cloud (Chapman & Hall/Distributed Computing and Intelligent Data Analytics Series)
by Punit Gupta, Mayank Kumar Goyal, Sudeshna Chakraborty and Ahmed A. ElngarMachine Learning and Models for Optimization in Cloud’s main aim is to meet the user requirement with high quality of service, least time for computation and high reliability. With increase in services migrating over cloud providers, the load over the cloud increases resulting in fault and various security failure in the system results in decreasing reliability. To fulfill this requirement cloud system uses intelligent metaheuristic and prediction algorithm to provide resources to the user in an efficient manner to manage the performance of the system and plan for upcoming requests. Intelligent algorithm helps the system to predict and find a suitable resource for a cloud environment in real time with least computational complexity taking into mind the system performance in under loaded and over loaded condition. This book discusses the future improvements and possible intelligent optimization models using artificial intelligence, deep learning techniques and other hybrid models to improve the performance of cloud. Various methods to enhance the directivity of cloud services have been presented which would enable cloud to provide better services, performance and quality of service to user. It talks about the next generation intelligent optimization and fault model to improve security and reliability of cloud. Key Features · Comprehensive introduction to cloud architecture and its service models. · Vulnerability and issues in cloud SAAS, PAAS and IAAS · Fundamental issues related to optimizing the performance in Cloud Computing using meta-heuristic, AI and ML models · Detailed study of optimization techniques, and fault management techniques in multi layered cloud. · Methods to improve reliability and fault in cloud using nature inspired algorithms and artificial neural network. · Advanced study of algorithms using artificial intelligence for optimization in cloud · Method for power efficient virtual machine placement using neural network in cloud · Method for task scheduling using metaheuristic algorithms. · A study of machine learning and deep learning inspired resource allocation algorithm for cloud in fault aware environment. This book aims to create a research interest & motivation for graduates degree or post-graduates. It aims to present a study on optimization algorithms in cloud for researchers to provide them with a glimpse of future of cloud computing in the era of artificial intelligence.
Machine Learning and Non-volatile Memories
by Rino Micheloni Cristian ZambelliThis book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply. This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs).After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry. In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called “neuromorphic architecture”), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption.SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs. Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs. Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage.No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.
Machine Learning and Mixed Reality for the Enhancement of Cultural Heritage: The Monastery of Saints Severino and Sossio Case Study
by Maurizio PerticariniThis book addresses the role of modern surveying and representation technologies in preserving and disseminating cultural heritage. A workflow is illustrated, describing the Former Monastery of Ss Severino and Sossio case study, currently the headquarters of the State Archives of Naples, Italy. After offering a historical overview, the work examines the spaces and structure of the building. A methodology for three-dimensional restitution is presented, using low-cost image-based and professional range-based surveying, concluding with recent AI technologies such as NeRF. The research continues with the virtual and augmented restitution of parts of the building that have been modified, lost over the centuries, or are no longer accessible. The Atrio dei Marmi, the Atrio del Platano, and the Sala del Capitolo and Sala del Refettorio are some of the places where the research has focused, creating a BIM model, using AR for precise interventions, and developing an immersive applied game to understand the third level of the monastery, rich in works of art and today also serving as a museum. In the final chapters, a particular focus is placed on the future of representation: new techniques, ongoing developments in AI supporting surveying, and the new possibilities offered by virtual spaces.
Machine Learning and Metaheuristics: Methods and Analysis (Algorithms for Intelligent Systems)
by Uma N. Dulhare Essam Halim HousseinThis book takes a balanced approach between theoretical understanding and real-time applications. All the topics included real-world problems which show how to explore, build, evaluate, and optimize machine learning models fusion with metaheuristic algorithms. Optimization algorithms classified into two broad categories as deterministic and probabilistic algorithms. The content of book elaborates optimization algorithms such as particle swarm optimization, ant colony optimization, whale search algorithm, and cuckoo search algorithm.
Machine Learning and Metaheuristics Algorithms, and Applications: Second Symposium, SoMMA 2020, Chennai, India, October 14–17, 2020, Revised Selected Papers (Communications in Computer and Information Science #1366)
by Selwyn Piramuthu Kuan-Ching Li Sabu M. Thampi Michal Wozniak Stefano Berretti Dhananjay SinghThis book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.
Machine Learning and Metaheuristics Algorithms, and Applications: First Symposium, SoMMA 2019, Trivandrum, India, December 18–21, 2019, Revised Selected Papers (Communications in Computer and Information Science #1203)
by Kuan-Ching Li Swagatam Das Sabu M. Thampi Michal Wozniak Stefano Berretti Ljiljana TrajkovicThis book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, held in Trivandrum, India, in December 2019.The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.
Machine Learning and Metaheuristic Computation
by Erik Cuevas Omar Avalos Jorge Galvez Fernando WarioLearn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical trainingDetailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and moreA rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.