Browse Results

Showing 26,801 through 26,825 of 61,781 results

Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Computer Assisted Stenting: First International Workshop, MLMECH 2019, and 8th Joint International Workshop, CVII-STENT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings (Lecture Notes in Computer Science #11794)

by Feng Zhang Hongen Liao Su-Lin Lee Yongpan Liu Simone Balocco Guillaume Zahnd Stefanie Demirci Luc Duong Shadi Albarqouni Stefano Moriconi Guijin Wang Zijian Ding Renzo Phellan Katharina Breininger

This book constitutes the refereed proceedings of the First International Workshop on Machine Learning and Medical Engineering for Cardiovasvular Healthcare, MLMECH 2019, and the International Joint Workshops on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For MLMECH 2019, 16 papers were accepted for publication from a total of 21 submissions. They focus on machine learning techniques and analyzing of ECG data in the diagnosis of heart diseases. CVII-STENT 2019 accepted all 8 submissiones for publication. They contain technological and scientific research concerning endovascular procedures.

Machine Learning and Mechanics Based Soft Computing Applications (Studies in Computational Intelligence #1068)

by Thi Dieu Linh Nguyen Joan Lu

This book highlights recent advances in the area of machine learning and robotics-based soft computing applications. The book covers various artificial intelligence, machine learning, and mechanics, a mix of mechanical computational engineering work. The current computing era has a huge market/potential for machine learning, robotics, and soft computing techniques and their applications. With this in view, the book shares latest research and cutting-edge applications useful for professionals and researchers in these areas. ​

Machine Learning and Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26–29, 2019, Proceedings (Lecture Notes in Computer Science #11713)

by Andreas Holzinger Edgar Weippl A Min Tjoa Peter Kieseberg

This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019.The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.

Machine Learning and Knowledge Extraction: Second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9 International Cross-Domain Conference, CD-MAKE 2018, Hamburg, Germany, August 27–30, 2018, Proceedings (Lecture Notes in Computer Science #11015)

by Andreas Holzinger Edgar Weippl A Min Tjoa Peter Kieseberg

This book constitutes the refereed proceedings of the IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2018, held in Hamburg, Germany, in September 2018.The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are clustered under the following topical sections: MAKE-Main Track, MAKE-Text, MAKE-Smart Factory, MAKE-Topology, and MAKE Explainable AI.

Machine Learning and Knowledge Extraction: First IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference, CD-MAKE 2017, Reggio, Italy, August 29 – September 1, 2017, Proceedings (Lecture Notes in Computer Science #10410)

by Andreas Holzinger, Peter Kieseberg, A Min Tjoa and Edgar Weippl

This book constitutes the refereed proceedings of the IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2017, held in Reggio, Italy, in August/September 2017.The 24 revised full papers presented were carefully reviewed and selected for inclusion in this volume. The papers deal with fundamental questions and theoretical aspects and cover a wide range of topics in the field of machine learning and knowledge extraction. They are organized in the following topical sections: MAKE topology; MAKE smart factory; MAKE privacy; MAKE VIS; MAKE AAL; and MAKE semantics.

Machine Learning and Knowledge Extraction: 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023, Benevento, Italy, August 29 – September 1, 2023, Proceedings (Lecture Notes in Computer Science #14065)

by Andreas Holzinger Edgar Weippl A Min Tjoa Peter Kieseberg Federico Cabitza Andrea Campagner

This volume LNCS-IFIP constitutes the refereed proceedings of the 7th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2023 in Benevento, Italy, during August 28 – September 1, 2023. The 18 full papers presented together were carefully reviewed and selected from 30 submissions. The conference focuses on integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.

Machine Learning and Knowledge Extraction: 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, Vienna, Austria, August 23–26, 2022, Proceedings (Lecture Notes in Computer Science #13480)

by Andreas Holzinger Edgar Weippl A Min Tjoa Peter Kieseberg

This book constitutes the refereed proceedings of the 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, held in Vienna, Austria during August 2022.The 23 full papers presented were carefully reviewed and selected from 45 submissions. The papers are covering a wide range from integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.

Machine Learning and Knowledge Extraction: 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August 17–20, 2021, Proceedings (Lecture Notes in Computer Science #12844)

by Andreas Holzinger Edgar Weippl A Min Tjoa Peter Kieseberg

This book constitutes the refereed proceedings of the 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, held in virtually in August 2021.The 20 full papers and 2 short papers presented were carefully reviewed and selected from 48 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.

Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part II (Communications in Computer and Information Science #1168)

by Peggy Cellier Kurt Driessens

This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.

Machine Learning and Knowledge Discovery in Databases: International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part I (Communications in Computer and Information Science #1167)

by Peggy Cellier Kurt Driessens

This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.

Machine Learning and Knowledge Discovery in Databases: European Conference, Ecml Pkdd 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I (Lecture Notes in Computer Science #11052)

by Michele Berlingerio Francesco Bonchi Thomas Gärtner Neil Hurley Georgiana Ifrim

he three volume proceedings LNAI 11051 – 11053 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2018, held in Dublin, Ireland, in September 2018. The total of 131 regular papers presented in part I and part II was carefully reviewed and selected from 535 submissions; there are 52 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: adversarial learning; anomaly and outlier detection; applications; classification; clustering and unsupervised learning; deep learningensemble methods; and evaluation.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part VII (Lecture Notes in Computer Science #14175)

by Elena Baralis Francesco Bonchi Nicolas Kourtellis Gianmarco De Francisci Morales Claudia Perlich Natali Ruchansky

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part VI (Lecture Notes in Computer Science #14174)

by Elena Baralis Francesco Bonchi Nicolas Kourtellis Gianmarco De Francisci Morales Claudia Perlich Natali Ruchansky

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part V (Lecture Notes in Computer Science #14173)

by Elena Baralis Francesco Bonchi Danai Koutra Claudia Plant Manuel Gomez Rodriguez

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part IV (Lecture Notes in Computer Science #14172)

by Elena Baralis Francesco Bonchi Danai Koutra Claudia Plant Manuel Gomez Rodriguez

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part III (Lecture Notes in Computer Science #14171)

by Elena Baralis Francesco Bonchi Danai Koutra Claudia Plant Manuel Gomez Rodriguez

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part II (Lecture Notes in Computer Science #14170)

by Elena Baralis Francesco Bonchi Danai Koutra Claudia Plant Manuel Gomez Rodriguez

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows:Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning.Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part I (Lecture Notes in Computer Science #14169)

by Elena Baralis Francesco Bonchi Danai Koutra Claudia Plant Manuel Gomez Rodriguez

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: ​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: ​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: ​Robustness; Time Series; Transfer and Multitask Learning. Part VI: ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.​Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part VI (Lecture Notes in Computer Science #13718)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part V (Lecture Notes in Computer Science #13717)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part IV (Lecture Notes in Computer Science #13716)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part III (Lecture Notes in Computer Science #13715)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part II (Lecture Notes in Computer Science #13714)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I (Lecture Notes in Computer Science #13713)

by Massih-Reza Amini Petra Kralj Novak Grigorios Tsoumakas Stéphane Canu Asja Fischer Tias Guns

The multi-volume set LNAI 13713 until 13718 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2022, which took place in Grenoble, France, in September 2022.The 236 full papers presented in these proceedings were carefully reviewed and selected from a total of 1060 submissions. In addition, the proceedings include 17 Demo Track contributions. The volumes are organized in topical sections as follows: Part I: Clustering and dimensionality reduction; anomaly detection; interpretability and explainability; ranking and recommender systems; transfer and multitask learning; Part II: Networks and graphs; knowledge graphs; social network analysis; graph neural networks; natural language processing and text mining; conversational systems; Part III: Deep learning; robust and adversarial machine learning; generative models; computer vision; meta-learning, neural architecture search; Part IV: Reinforcement learning; multi-agent reinforcement learning; bandits and online learning; active and semi-supervised learning; private and federated learning; . Part V: Supervised learning; probabilistic inference; optimal transport; optimization; quantum, hardware; sustainability; Part VI: Time series; financial machine learning; applications; applications: transportation; demo track.

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part IV (Lecture Notes in Computer Science #12460)

by Dunja Mladenić Yuxiao Dong Craig Saunders

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic.The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and autoencoders; domain adaptation; sketching, sampling, and binary projections; graphical models and causality; (spatio-) temporal data and recurrent neural networks; collaborative filtering and matrix completion. Part II: deep learning optimization and theory; active learning; adversarial learning; federated learning; Kernel methods and online learning; partial label learning; reinforcement learning; transfer and multi-task learning; Bayesian optimization and few-shot learning. Part III: Combinatorial optimization; large-scale optimization and differential privacy; boosting and ensemble methods; Bayesian methods; architecture of neural networks; graph neural networks; Gaussian processes; computer vision and image processing; natural language processing; bioinformatics. Part IV: applied data science: recommendation; applied data science: anomaly detection; applied data science: Web mining; applied data science: transportation; applied data science: activity recognition; applied data science: hardware and manufacturing; applied data science: spatiotemporal data. Part V: applied data science: social good; applied data science: healthcare; applied data science: e-commerce and finance; applied data science: computational social science; applied data science: sports; demo track.

Refine Search

Showing 26,801 through 26,825 of 61,781 results