Browse Results

Showing 15,976 through 16,000 of 61,787 results

Data, Security, and Trust in Smart Cities (Signals and Communication Technology)

by Stan McClellan

This book provides a comprehensive perspective on issues related to the trustworthiness of information in the emerging “Smart City.” Interrelated topics associated with the veracity of information are presented and discussed by authors with authoritative perspectives from multiple fields. The focus on security, veracity, and trustworthiness of information, data, societal structure and related topics in connected cities is timely, important, and uniquely presented. The authors cover issues related to the proliferation of disinformation and the mechanics of trust in modern society. Topical issues include trust in technologies, such as the use of machine learning (ML) and artificial intelligence (AI), the importance of encryption and cybersecurity, and the value of protecting of critical infrastructure. Structural issues include legal and governmental institutions, including the basis and importance of these fundamental components of society. Functional issues also include issues of societal trust related to healthcare, medical practitioners, and the dependence on reliability of scientific results. Insightful background on the development of AI is provided, and the use of this compelling technology in applications spanning networks, supply chains, and business practices are discussed by practitioners with direct knowledge and convincing perspective. These thought-provoking opinions from notable industry, academia, medicine, law, and government leaders provide substantial benefit for a variety of stakeholders.

Data, Systems, and Society: Harnessing AI for Societal Good

by Munther A. Dahleh

Harnessing the power of data and AI methods to tackle complex societal challenges requires transdisciplinary collaborations across academia, industry, and government. In this compelling book, Munther A. Dahleh, founder of the MIT Institute for Data, Systems, and Society (IDSS), offers a blueprint for researchers, professionals, and institutions to create approaches to problems of high societal value using innovative, holistic, data-driven methods. Drawing on his experience at IDSS and knowledge of similar initiatives elsewhere, Dahleh describes in clear, non-technical language how statistics, data science, information and decision systems, and social and institutional behavior intersect across multiple domains. He illustrates key concepts with real-life examples from optimizing transportation to making healthcare decisions during pandemics to understanding the media's impact on elections and revolutions. Dahleh also incorporates crucial concepts such as robustness, causality, privacy, and ethics and shares key lessons learned about transdisciplinary communication and about unintended consequences of AI and algorithmic systems.

Data-Centric Applications with Vaadin 8: Develop and maintain high-quality web applications using Vaadin

by Alejandro Duarte

This book teaches you everything you need to know to create stunning Vaadin applications for all your web development needs. Deep dive into advanced Vaadin concepts while creating your very own sample Vaadin application.Key FeaturesA one-stop book to enhance your working knowledge with Vaadin.Explore and implement the architecture of Vaadin applications.Delve into advanced topics such as data binding, authentication and authorization to improvise your application’s performance.Book DescriptionVaadin is an open-source Java framework used to build modern user interfaces. Vaadin 8 simplifies application development and improves user experience. The book begins with an overview of the architecture of Vaadin applications and the way you can organize your code in modules.Then it moves to the more advanced topics about advanced topics such as internationalization, authentication, authorization, and database connectivity. The book also teaches you how to implement CRUD views, how to generate printable reports, and how to manage data with lazy loading.By the end of this book you will be able to architect, implement, and deploy stunning Vaadin applications, and have the knowledge to master web development with Vaadin.What you will learnModularize your Vaadin applications with MavenCreate high quality custom componentsImplement robust and secure authentication and authorization mechanismsConnect to SQL databases efficientlyDesign robust CRUD (Create, Read, Update, Delete) viewsGenerate stunning reportsImprove resource consumption by using lazy loadingWho this book is forIf you area Software developer with previous experience with Vaadin and would like to gain more comprehensive and advanced skills in Vaadin web development, then this book is for you.

Data-Centric Artificial Intelligence for Multidisciplinary Applications

by Parikshit N. Mahalle Gitanjali R. Shinde Namrata N. Wasatkar

This book explores the need for a data‑centric AI approach and its application in the multidisciplinary domain, compared to a model‑centric approach. It examines the methodologies for data‑centric approaches, the use of data‑centric approaches in different domains, the need for edge AI and how it differs from cloud‑based AI. It discusses the new category of AI technology, "data‑centric AI" (DCAI), which focuses on comprehending, utilizing, and reaching conclusions from data. By adding machine learning and big data analytics tools, data‑centric AI modifies this by enabling it to learn from data rather than depending on algorithms. It can therefore make wiser choices and deliver more precise outcomes. Additionally, it has the potential to be significantly more scalable than conventional AI methods.• Includes a collection of case studies with experimentation results to adhere to the practical approaches• Examines challenges in dataset generation, synthetic datasets, analysis, and prediction algorithms in stochastic ways• Discusses methodologies to achieve accurate results by improving the quality of data• Comprises cases in healthcare and agriculture with implementation and impact of quality data in building AI applications

Data-Centric Business and Applications: Advancements in Information and Knowledge Management, Volume 1 (Lecture Notes on Data Engineering and Communications Technologies #213)

by Solomiia Fedushko Peter Štarchoň Katarína Gubíniová

This book explores the profound impact of data on company operations, decision-making, and application development. The book delves into sophisticated information and knowledge management principles, including data governance, analytics, knowledge discovery, and artificial intelligence. The subject encompasses data-centric business models, emerging technology, and ethical considerations. Each chapter is authored by an expert in the area who offers important insights into the influence of data on the advancement of business and application development. The material herein is appropriate for a diverse audience, encompassing academics, practitioners, business professionals, and researchers. The editors sincerely appreciate the writers for their significant contributions, which have been crucial in developing an essential resource for studying and advancing data-centric businesses and applications.

Data-Centric Business and Applications: Advancements in Information and Knowledge Management, Volume 2 (Lecture Notes on Data Engineering and Communications Technologies #208)

by Solomiia Fedushko Peter Štarchoň Katarína Gubíniová

This book stands out by exploring the significance of data in various aspects of business, including operations, decision-making, and application development, in a comprehensive and accessible manner. It delves into advanced topics such as data management, analytics, knowledge discovery, artificial intelligence, data-centric business models, emerging technologies, and ethical implications, providing a unique perspective. The book is appropriate for academics, professionals, and researchers with intermediate to advanced data management skills. Data plays a crucial role in today's rapidly evolving digital environment, serving as the foundation for businesses and the key element in driving innovation across diverse industries. This book delves into the latest advancements in data management, their impact on modern corporate settings, and advanced information and knowledge management concepts. The chapters in this book discuss various topics, including incorporating data-driven methods into business models, the difficulties and advantages of emerging technology, and the ethical aspects of making decisions based on data.

Data-Centric Business and Applications: Advancements in Information and Knowledge Management, Volume 3 (Lecture Notes on Data Engineering and Communications Technologies #212)

by Solomiia Fedushko Peter Štarchoň Katarína Gubíniová

Embark on a journey into the future of business with a groundbreaking book that explores the dynamic interplay between data and business, unlocking its transformative power in strategy, decision-making, and application development. Dive deep into cutting-edge topics such as data governance, analytics, knowledge discovery, and AI, and gain an in-depth understanding of managing, analyzing, and extracting insights from complex data sets. This book's holistic approach sets this book apart, seamlessly integrating the latest information and knowledge management concepts. From integrating data-centric approaches into business models to addressing considerations in data-driven decisions, the diverse topics covered will provide invaluable insights into the central role of data in shaping the future of business and applications. This book sheds light on the ongoing advances in structural management, demonstrating how previously understood knowledge, technologies, and data can pave the way for sustainable solutions in the face of innovation, meet insight, and allow businesses to thrive in the digital age.

Data-Centric Business and Applications: Evolvements in Business Information Processing and Management (Volume 2) (Lecture Notes on Data Engineering and Communications Technologies #30)

by Natalia Kryvinska Michal Greguš

This book explores various aspects of data engineering and information processing. In this second volume, the authors assess the challenges and opportunities involved in doing business with information. Their contributions on business information processing and management reflect diverse viewpoints – not only technological, but also business and social. As the global marketplace grows more and more complex due to the increasing availability of data, the information business is steadily gaining popularity and has a huge impact on modern society. Thus, there is a growing need for consensus on how business information can be created, accessed, used and managed.

Data-Centric Business and Applications: Evolvements in Business Information Processing and Management (Volume 3) (Lecture Notes on Data Engineering and Communications Technologies #42)

by Natalia Kryvinska Dmytro Ageyev Tamara Radivilova

Building on the authors’ previous work, this book addresses key processes and procedures used in information/data processing and management. Modern methods of business information processing, which draw on artificial intelligence, big data, and cloud-based storage and processing, are opening exciting new opportunities for doing business on the basis of information technologies. Thus, in this third book, the authors continue to explore various aspects – technological as well as business and social – of the information industries. Further, they analyze the challenges and opportunities entailed by these kinds of business.

Data-Centric Business and Applications: Evolvements in Business Information Processing and Management—Volume 1 (Lecture Notes on Data Engineering and Communications Technologies #20)

by Natalia Kryvinska Michal Greguš

This book discusses processes and procedures in information/data processing and management. The global market is becoming more and more complex with an increased availability of data and information, and as a result doing business with information is becoming more popular, with a significant impact on modern society immensely. This means that there is a growing need for a common understanding of how to create, access, use and manage business information. As such this book explores different aspects of data and information processing, including information generation, representation, structuring, organization, storage, retrieval, navigation, human factors in information systems, and the use of information. It also analyzes the challenges and opportunities of doing business with information, and presents various perspectives on business information managing.

Data-Centric Business and Applications: ICT Systems-Theory, Radio-Electronics, Information Technologies and Cybersecurity (Volume 5) (Lecture Notes on Data Engineering and Communications Technologies #48)

by Natalia Kryvinska Dmytro Ageyev Tamara Radivilova

This book addresses the challenges and opportunities of information/data processing and management. It also covers a range of methods, techniques and strategies for making it more efficient, approaches to increasing its usage, and ways to minimize information/data loss while improving customer satisfaction. Information and Communication Technologies (ICTs) and the Service Systems associated with them have had an enormous impact on businesses and our day-to-day lives over the past three decades, and continue to do so. This development has led to the emergence of new application areas and relevant disciplines, which in turn present new challenges and opportunities for service system usage. The book provides practical insights into various aspects of ICT technologies for service systems: Techniques for information/data processing and modeling in service systems Strategies for the provision of information/data processing and management Methods for collecting and analyzing information/data Applications, benefits, and challenges of service system implementation Solutions to increase the performance of various service systems using the latest ICT technologies

Data-Centric Business and Applications: ICT Systems—Theory, Radio-Electronics, Information Technologies and Cybersecurity (Lecture Notes on Data Engineering and Communications Technologies #69)

by Natalia Kryvinska Dmytro Ageyev Tamara Radivilova

This book, building on the authors’ previous work, presents new communication and networking technologies, challenges and opportunities of information/data processing and transmission. It also discusses the development of more intelligent and efficient communication technologies, which are an essential part of current day-to-day life. Information and Communication Technologies (ICTs) have an enormous impact on businesses and our day-to-day lives over the past three decades and continue to do so. Modern methods of business information processing are opening exciting new opportunities for doing business on the basis of information technologies. The book contains research that spans a wide range of communication and networking technologies, including wireless sensor networks, optical and telecommunication networks, storage area networks, error-free transmission and signal processing.

Data-Centric Business and Applications: Modern Trends in Financial and Innovation Data Processes 2023. Volume 1 (Lecture Notes on Data Engineering and Communications Technologies #195)

by Andriy Semenov Iryna Yepifanova Jana Kajanová

This book examines aspects of financial and investment processes, as well as the application of information technology mechanisms to business and industrial management, using the experience of the Ukrainian economy as an example. An effective tool for supporting business data processing is combining modern information technologies and the latest achievements in economic theory. The variety of industrial sectors studied supports the continuous acquisition and use of efficient business analysis in organizations. In addition, the book elaborates on multidisciplinary concepts, examples, and practices that can be useful for researching the evolution of developments in the field. Also, in this book, there is a description of analysis methods for making decisions in business, finance, and innovation management.

Data-Centric Business and Applications: Modern Trends in Financial and Innovation Data Processes 2023. Volume 2 (Lecture Notes on Data Engineering and Communications Technologies #194)

by Andriy Semenov Iryna Yepifanova Jana Kajanová

This book examines aspects of financial and investment processes, as well as the application of information technology mechanisms to business and industrial management, using the experience of the Ukrainian economy as an example. An effective tool for supporting business data processing is combining modern information technologies and the latest achievements in economic theory. The variety of industrial sectors studied supports the continuous acquisition and use of efficient business analysis in organizations. In addition, the book elaborates on multidisciplinary concepts, examples, and practices that can be useful for researching the evolution of developments in the field. Also, in this book, there is a description of analysis methods for making decisions in business, finance, and innovation management.

Data-Centric Business and Applications: Modern Trends in Financial and Innovation Data Processes 2024 (Lecture Notes on Data Engineering and Communications Technologies #240)

by Andriy Semenov Iryna Yepifanova Jana Kajanová

The combination of the latest developments in economic theory with contemporary information technologies may be considered as a powerful instrument for the processing of commercial data. This book employs the Ukrainian economy as a case study to examine the multifaceted aspects of financial and investment processes, as well as the utilization of information technology mechanisms in company and industrial management. The range of industrial sectors that have been investigated facilitates application of effective business analysis in enterprises. Furthermore, the book provides detailed insights into transdisciplinary ideas, practices, and examples that may be beneficial when examining evolutional developments in this area. Additionally, this book presents analytical techniques for decision-making in business, finance, and innovation management.

Data-Centric Business and Applications: Towards Software Development (Volume 4) (Lecture Notes on Data Engineering and Communications Technologies #40)

by Lech Madeyski Natalia Kryvinska Aneta Poniszewska-Marańda Stanisław Jarząbek

This book explores various aspects of software creation and development as well as data and information processing. It covers relevant topics such as business analysis, business rules, requirements engineering, software development processes, software defect prediction, information management systems, and knowledge management solutions. Lastly, the book presents lessons learned in information and data management processes and procedures.

Data-Centric Security in Software Defined Networks (Studies in Big Data #149)

by Marek Amanowicz Sebastian Szwaczyk Konrad Wrona

The book focuses on applying the data-centric security (DCS) concept and leveraging the unique capabilities of software-defined networks (SDN) to improve the security and resilience of corporate and government information systems used to process critical information and implement business processes requiring special protection. As organisations increasingly rely on information technology, cyber threats to data and infrastructure can significantly affect their operations and adversely impact critical business processes. Appropriate authentication, authorisation, monitoring, and response measures must be implemented within the perimeter of the system to protect against adversaries. However, sophisticated attackers can compromise the perimeter defences and even remain in the system for a prolonged time without the owner being aware of these facts. Therefore, new security paradigms such as Zero Trust and DCS aimto provide defence under the assumption that the boundary protections will be breached. Based on experience and lessons learned from research on the application of DCS to defence systems, the authors present an approach to integrating the DCS concept with SDN. They introduce a risk-aware approach to routing in SDN, enabling defence-in-depth and enhanced security for data in transit. The book describes possible paths for an organisation to transition towards DCS, indicating some open and challenging issues requiring further investigation. To allow interested readers to conduct detailed studies and evaluate the exemplary implementation of DCS over SDN, the text includes a short tutorial on using the emulation environment and links to the websites from which the software can be downloaded.

Data-Driven Alexa Skills: Voice Access to Rich Data Sources for Enterprise Applications

by Simon A. Kingaby

Design and build innovative, custom, data-driven Alexa skills for home or business. Working through several projects, this book teaches you how to build Alexa skills and integrate them with online APIs. If you have basic Python skills, this book will show you how to build data-driven Alexa skills. You will learn to use data to give your Alexa skills dynamic intelligence, in-depth knowledge, and the ability to remember. Data-Driven Alexa Skills takes a step-by-step approach to skill development. You will begin by configuring simple skills in the Alexa Skill Builder Console. Then you will develop advanced custom skills that use several Alexa Skill Development Kit features to integrate with lambda functions, Amazon Web Services (AWS), and Internet data feeds. These advanced skills enable you to link user accounts, query and store data using a NoSQL database, and access real estate listings and stock prices via web APIs.What You Will LearnSet up and configure your development environment properly the first timeBuild Alexa skills quickly and efficiently using Agile tools and techniquesCreate a variety of data-driven Alexa skills for home and businessAccess data from web applications and Internet data sources via their APIsTest with unit-testing frameworks throughout the development life cycleManage and query your data using the DynamoDb NoSQL database enginesWho This Book Is ForDevelopers who wish to go beyond Hello World and build complex, data-driven applications on Amazon's Alexa platform; developers who want to learn how to use Lambda functions, the Alexa Skills SDK, Alexa Presentation Language, and Alexa Conversations; developers interested in integrating with public APIs such as real estate listings and stock market prices. Readers will need to have basic Python skills.

Data-Driven Approach for Bio-medical and Healthcare (Data-Intensive Research)

by Nilanjan Dey

The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.

Data-Driven Clinical Decision-Making Using Deep Learning in Imaging (Studies in Big Data #152)

by Nilanjan Dey M. F. Mridha

This book explores cutting-edge medical imaging advancements and their applications in clinical decision-making. The book contains various topics, methodologies, and applications, providing readers with a comprehensive understanding of the field's current state and prospects. It begins with exploring domain adaptation in medical imaging and evaluating the effectiveness of transfer learning to overcome challenges associated with limited labeled data. The subsequent chapters delve into specific applications, such as improving kidney lesion classification in CT scans, elevating breast cancer research through attention-based U-Net architecture for segmentation and classifying brain MRI images for neurological disorders. Furthermore, the book addresses the development of multimodal machine learning models for brain tumor prognosis, the identification of unique dermatological signatures using deep transfer learning, and the utilization of generative adversarial networks to enhance breast cancer detection systems by augmenting mammogram images. Additionally, the authors present a privacy-preserving approach for breast cancer risk prediction using federated learning, ensuring the confidentiality and security of sensitive patient data. This book brings together a global network of experts from various corners of the world, reflecting the truly international nature of its research.

Data-Driven Company: Moderne und integrierte Ansätze, um datengetrieben zu werden

by Sven-Erik Willrich

Daten werden für Unternehmen immer wichtiger. Gleichzeitig mangelt es an Best Practices und Leitfäden, wie klassische mit modernen Ansätzen wie Data Mesh oder Data Fabric zu einem anwendbaren Framework integriert werden können. Hierzu werden die Themen Organisationsdesign, Datenstrategie / -management und Enterprise Architecture auf theoretische und pragmatische Weise verbunden. Das Buch präsentiert Ziele, ein Data Operating Model sowie datenstrategische Ansätze für eine Data-Driven Company. Hervorzuheben sind dabei die zahlreichen Abbildungen aus diesem Buch, die die komplexen Zusammenhänge anschaulich machen und das Lesen unterstützen. Zielgruppe Mit diesen Inhalten richtet sich das Buch an Führungskräfte, Experten, Berater und weitere Personen, die einen Bezug zur IT und Daten haben beziehungsweise diesen entwickeln möchten. Durch den niedrigschwelligen Einstieg und gleichzeitigen Tiefgang in die ausgewählten Themen adressiert es sowohl Einsteiger als auch erfahrene Datenexperten. Autor Dr. Sven-Erik Willrich ist ein erfahrener Experte im Bereich IT und Datenmanagement. Mit seinem Hintergrund in Wirtschaftsinformatik und langjähriger Beratungserfahrung bringt er sowohl theoretisches Wissen als auch praxisorientierte Lösungsansätze ein. Als Dozent und Redner im Bereich Digitalisierung teilt er regelmäßig seine Expertise.

Data-Driven Customer Engagement: Mastering MarTech Strategies for Success

by Ralf Strauss

Embark on a journey through the rapidly evolving landscape of Marketing Technology (MarTech) with this comprehensive guide. From understanding the strategic imperatives driving MarTech adoption to navigating the intricacies of data-driven customer interaction, this book provides invaluable insights and practical strategies. Explore topics ranging from budget allocation and market potential to data readiness and GDPR compliance, gaining a deep understanding of key concepts and best practices. Whether you're grappling with the complexities of AI integration or seeking to optimize measurement and KPIs, this book equips you with the knowledge and tools needed to thrive in today's digital marketing environment. With decades of industry experience, Ralf Strauss offers in this book a roadmap for success, empowering marketers to navigate the challenges and seize the opportunities presented by MarTech innovation.

Data-Driven Customer Experience Transformation: Optimize Your Omnichannel Approach

by Mohamed Zaki

We are living in an experience-driven economy, where the customer's experience is paramount and even beloved brands risk losing market share due to a single negative customer experience.In our technology-led, omnichannel environment, one of the biggest risks for brands is a lack of consistency in their customer experience across digital, physical and social channels. Data-driven Customer Experience Transformation provides insights and frameworks for creating delightful customer experiences across all three channels, by leveraging data and the latest technologies. Using cutting-edge research from the Cambridge Service Alliance, at the University of Cambridge, this book explores the importance of omnichannel customer-centricity across all sectors and takes you on a journey from setting your strategy, through designing and managing your customer experiences in real-time. It explores how AI can be used to identify opportunities and predict engagement, as well as how to use data to understand customer loyalty, forge stronger customer relationships and drive growth.By combining academic rigour with real-world examples from leading companies such as Microsoft, KFC and Emirates Airline, this book is the ultimate guide to designing and implementing an exceptional data-driven customer experience across all channels, whether you work in B2B, B2C or public services.

Data-Driven Decision Making

by Vinod Sharma Chandan Maheshkar Jeanne Poulose

This book delves into contemporary business analytics techniques across sectors for critical decision-making. It combines data, mathematical and statistical models, and information technology to present alternatives for decision evaluation. Offering systematic mechanisms, it explores business contexts, factors, and relationships to foster competitiveness. Beyond managerial perspectives, it includes contributions from professionals, academics, and scholars worldwide, delivering comprehensive knowledge and skills through diverse viewpoints, cases, and applications of analytical tools. As an international business science reference, it targets professionals, academics, researchers, doctoral scholars, postgraduate students, and research organizations seeking a nuanced understanding of modern business analytics.

Data-Driven Decision Making in Entrepreneurship: Tools for Maximizing Human Capital

by Nikki Blacksmith Maureen E. McCusker

Since the beginning of the 21st century, there has been an explosion in startup organizations. Together, these organizations have been valued at over $3 trillion. In 2019, alone, nearly $300 billion of venture capital was invested globally (Global Startup Ecosystem Report 2020). Simultaneously, an explosion in high volume and high velocity of big data is rapidly changing how organizations function. Gone are the days where organizations can make decisions solely on intuition, logic, or experience. Some have gone as far as to say that data is the most valuable currency and resource available to businesses, and startups are no exception. However, startups and small businesses do differ from their larger counterparts and corporations in three distinct ways: 1) they tend to have fewer resources, time, and specialized training to devote to data analytics; 2) they are part of a unique entrepreneurial ecosystem with unique needs; 3) scholarship and academic research on human capital data analytics in startups is lacking. Existing entrepreneurship research focuses almost exclusively on macro-level aspects. There has been little to no integration of micro- and meso-level research (i.e., individual and team sciences), which is unfortunate given how organizational scientists have significantly advanced human capital data analytics. Unlike other books focused on data analytics and decision for organizations, this proposed book is purposefully designed to be more specifically aimed at addressing the unique idiosyncrasies of the science, research, and practice of startups. Each chapter highlights a specific organizational domain and discuss how a novel data analytic technique can help enhance decision-making, provides a tutorial of said regarding the data analytic technique, and lists references and resources for the respective data analytic technique. The volume will be grounded in sound theory and practice of organizational psychology, entrepreneurship and management and is divided into two parts: assessing and evaluating human capital performance and the use of data analytics to manage human capital.

Refine Search

Showing 15,976 through 16,000 of 61,787 results