- Table View
- List View
Machine Intelligence and Big Data Analytics for Cybersecurity Applications (Studies in Computational Intelligence #919)
by Yassine Maleh Mamoun Alazab Mohammad Shojafar Youssef BaddiThis book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.
Machine Intelligence and Big Data in Industry
by Dominik Ryżko Piotr Gawrysiak Marzena Kryszkiewicz Henryk RybińskiThis book presents valuable contributions devoted topractical applications of Machine Intelligence and Big Data in various branchesof the industry. All the contributions are extended versions of presentationsdelivered at the Industrial Session the 6th International Conference on PatternRecognition and Machine Intelligence (PREMI 2015) held in Warsaw, Poland atJune 30- July 3, 2015, which passed through a rigorous reviewing process. Thecontributions address real world problems and show innovative solutions used tosolve them. This volume will serve as a bridge between researchers andpractitioners, as well as between different industry branches, which can benefitfrom sharing ideas and results.
Machine Intelligence and Data Analytics for Sustainable Future Smart Cities (Studies in Computational Intelligence #971)
by Al-Sakib Khan Pathan Yassine Maleh Mamoun Alazab Uttam GhoshThis book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
Machine Intelligence and Data Science Applications: Proceedings of MIDAS 2021 (Lecture Notes on Data Engineering and Communications Technologies #132)
by T. P. Singh Tanupriya Choudhury Ravi Tomar Vaclav Skala Md. Abul BasharThis book is a compilation of peer reviewed papers presented at International Conference on Machine Intelligence and Data Science Applications (MIDAS 2021), held in Comilla University, Cumilla, Bangladesh during 26 – 27 December 2021. The book covers applications in various fields like image processing, natural language processing, computer vision, sentiment analysis, speech and gesture analysis, etc. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber physical system and smart agriculture, etc. The book is a good reference for computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates.
Machine Intelligence and Data Science Applications: Proceedings of MIDAS 2022 (Algorithms for Intelligent Systems)
by T. P. Singh Jung-Sup Um Tanupriya Choudhury Ravi Tomar Amar Ramdane-CherifThis book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications (MIDAS 2022), held on October 28 and 29, 2022, at the University of Versailles—Paris-Saclay, France. The book covers applications in various fields like data science, machine intelligence, image processing, natural language processing, computer vision, sentiment analysis, and speech and gesture analysis. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber-physical system, and smart agriculture. The book is a good reference for computer science engineers, lecturers/researchers in the machine intelligence discipline, and engineering graduates.
Machine Intelligence and Emerging Technologies: First International Conference, MIET 2022, Noakhali, Bangladesh, September 23-25, 2022, Proceedings, Part I (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering #490)
by M. Shamim Kaiser Mohammad Shamsul Arefin Md. Shahriare Satu Mohammad Ali MoniThe two-volume set LNICST 490 and 491 constitutes the proceedings of the First International Conference on Machine Intelligence and Emerging Technologies, MIET 2022, hosted by Noakhali Science and Technology University, Noakhali, Bangladesh, during September 23–25, 2022. The 104 papers presented in the proceedings were carefully reviewed and selected from 272 submissions. This book focuses on theoretical, practical, state-of-art applications, and research challenges in the field of artificial intelligence and emerging technologies. It will be helpful for active researchers and practitioners in this field. These papers are organized in the following topical sections: imaging for disease detection; pattern recognition and natural language processing; bio signals and recommendation systems for wellbeing; network, security and nanotechnology; and emerging technologies for society and industry.
Machine Intelligence and Emerging Technologies: First International Conference, MIET 2022, Noakhali, Bangladesh, September 23-25, 2022, Proceedings, Part II (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering #491)
by M. Shamim Kaiser Mohammad Shamsul Arefin Md. Shahriare Satu Mohammad Ali MoniThe two-volume set LNICST 490 and 491 constitutes the proceedings of the First International Conference on Machine Intelligence and Emerging Technologies, MIET 2022, hosted by Noakhali Science and Technology University, Noakhali, Bangladesh, during September 23–25, 2022. The 104 papers presented in the proceedings were carefully reviewed and selected from 272 submissions. This book focuses on theoretical, practical, state-of-art applications, and research challenges in the field of artificial intelligence and emerging technologies. It will be helpful for active researchers and practitioners in this field. These papers are organized in the following topical sections: imaging for disease detection; pattern recognition and natural language processing; bio signals and recommendation systems for wellbeing; network, security and nanotechnology; and emerging technologies for society and industry.
Machine Intelligence and Signal Analysis (Advances in Intelligent Systems and Computing #748)
by M. Tanveer Ram Bilas PachoriThe book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.
Machine Intelligence and Signal Processing
by Richa Singh Mayank Vatsa Angshul Majumdar Ajay KumarThis book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning - instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentations at the workshop. This book has three chapters on various topics of biometrics - two are on face detection and one on iris recognition; all from top researchers in their field. There are four chapters on different biomedical signal / image processing problems. Two of these are on retinal vessel classification and extraction; one on biomedical signal acquisition and the fourth one on region detection. There are three chapters on data analysis - a topic gaining immense popularity in industry and academia. One of these shows a novel use of compressed sensing in missing sales data interpolation. Another chapter is on spam detection and the third one is on simple one-shot movie rating prediction. Four other chapters cover various cutting edge miscellaneous topics on character recognition, software effort prediction, speech recognition and non-linear sparse recovery. The contents of this book will prove useful to researchers, professionals and students in the domains of machine learning and signal processing.
Machine Intelligence and Signal Processing: Proceedings of International Conference, MISP 2019 (Advances in Intelligent Systems and Computing #1085)
by Shekhar Verma Dharma P. Agrawal Sonali AgarwalThis book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).
Machine Intelligence and Smart Systems: Proceedings of MISS 2020 (Algorithms for Intelligent Systems)
by Jitendra Agrawal Jonathan H. Chan Manish Gupta Shikha Agrawal Kamlesh Kumar GuptaThis book is a collection of peer-reviewed best selected research papers presented at the First International Conference on Machine Intelligence and Smart Systems 2020 (MISS 2020), organized during September 24–25, 2020, in Gwalior, India. The book presents new advances and research results in the fields of machine intelligence, artificial intelligence and smart systems. It includes main paradigms of machine intelligence algorithms, namely (1) neural networks, (2) evolutionary computation, (3) swarm intelligence, (4) fuzzy systems and (5) immunological computation.
Machine Intelligence and Smart Systems: Proceedings of MISS 2021 (Algorithms for Intelligent Systems)
by Jitendra Agrawal Jonathan H. Chan Manish Gupta Shikha Agrawal Kamlesh Kumar GuptaThis book is a collection of peer-reviewed best selected research papers presented at the Second International Conference on Machine Intelligence and Smart Systems (MISS 2021), organized during September 24–25, 2021, in Gwalior, India. The book presents new advances and research results in the fields of machine intelligence, artificial intelligence and smart systems. It includes main paradigms of machine intelligence algorithms, namely (1) neural networks, (2) evolutionary computation, (3) swarm intelligence, (4) fuzzy systems and (5) immunological computation. Scientists, engineers, academicians, technology developers, researchers, students and government officials will find this book useful in handling their complicated real-world issues by using machine intelligence methodologies.
Machine Intelligence and Smart Systems: Third International Conference, MISS 2023, Bhopal, India, January 24–25, 2023, Revised Selected Papers, Part I (Communications in Computer and Information Science #1951)
by Jitendra Agrawal Manish Gupta Shikha Agrawal Kamlesh Gupta Korhan CengisThe two-volume set CCIS 1951 and 1952 constitutes the refereed post-conference proceedings of the Third International Conference on Machine Intelligence and Smart Systems, MISS 2023, Bhopal, India, during January 24-25, 2023. The 58 full papers included in this book were carefully reviewed and selected from 203 submissions. They were organized in topical sections as follows: Language processing; Recent trends; AI defensive schemes; Principle components; Deduction and prevention models.
Machine Intelligence and Smart Systems: Third International Conference, MISS 2023, Bhopal, India, January 24–25, 2023, Revised Selected Papers, Part II (Communications in Computer and Information Science #1952)
by Jitendra Agrawal Manish Gupta Shikha Agrawal Kamlesh Gupta Korhan CengisThe two-volume set CCIS 1951 and 1952 constitutes the refereed post-conference proceedings of the Third International Conference on Machine Intelligence and Smart Systems, MISS 2023, Bhopal, India, during January 24-25, 2023. The 58 full papers included in this book were carefully reviewed and selected from 203 submissions. They were organized in topical sections as follows: Language processing; Recent trends; AI defensive schemes; Principle components; Deduction and prevention models.
Machine Intelligence and Soft Computing: Proceedings of ICMISC 2020 (Advances in Intelligent Systems and Computing #1280)
by Debnath Bhattacharyya N. Thirupathi RaoThis book gathers selected papers presented at the International Conference on Machine Intelligence and Soft Computing (ICMISC 2020), held jointly by Vignan’s Institute of Information Technology, Visakhapatnam, India and VFSTR Deemed to be University, Guntur, AP, India during 03-04 September 2020. Topics covered in the book include the artificial neural networks and fuzzy logic, cloud computing, evolutionary algorithms and computation, machine learning, metaheuristics and swarm intelligence, neuro-fuzzy system, soft computing and decision support systems, soft computing applications in actuarial science, soft computing for database deadlock resolution, soft computing methods in engineering, and support vector machine.
Machine Intelligence and Soft Computing: Proceedings of ICMISC 2021 (Advances in Intelligent Systems and Computing #1419)
by Philippe Fournier-Viger Debnath Bhattacharyya Sanjoy Kumar SahaThis book gathers selected papers presented at the International Conference on Machine Intelligence and Soft Computing (ICMISC 2021), organized by Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India during 22 – 24 September 2021. The topics covered in the book include the artificial neural networks and fuzzy logic, cloud computing, evolutionary algorithms and computation, machine learning, metaheuristics and swarm intelligence, neuro-fuzzy system, soft computing and decision support systems, soft computing applications in actuarial science, soft computing for database deadlock resolution, soft computing methods in engineering, and support vector machine.
Machine Intelligence for Research and Innovations: Proceedings of MAiTRI 2023, Volume 1 (Lecture Notes in Networks and Systems #832)
by Anupam Yadav Rajesh Kumar Lipo Wang Om Prakash VermaThe book is a collection of high-quality peer-reviewed research papers presented in the First International Conference on MAchine inTelligence for Research & Innovations (MAiTRI 2023 Summit), held at Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Panjab, India during 1 – 3 September 2023. This book focuses on recent advancement in the theory and realization of machine intelligence (MI) and their tools and growing applications such as machine learning, deep learning, quantum machine learning, real-time computer vision, pattern recognition, natural language processing, statistical modelling, autonomous vehicles, human interfaces, computational intelligence, and robotics.
Machine Intelligence for Research and Innovations: Proceedings of MAiTRI 2023, Volume 2 (Lecture Notes in Networks and Systems #831)
by Anupam Yadav Rajesh Kumar Lipo Wang Om Prakash VermaThe book is a collection of high-quality peer-reviewed research papers presented in the First International Conference on Machine Intelligence for Research and Innovations (MAiTRI 2023 Summit), held at Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India during 1 – 3 September 2023. This book focuses on recent advancement in the theory and realization of machine intelligence (MI) and their tools and growing applications such as machine learning, deep learning, quantum machine learning, real-time computer vision, pattern recognition, natural language processing, statistical modelling, autonomous vehicles, human interfaces, computational intelligence, and robotics.
Machine Intelligence for Smart Applications: Opportunities and Risks (Studies in Computational Intelligence #1105)
by Saad Motahhir Amina AdadiThis book provides insights into recent advances in Machine Intelligence (MI) and related technologies, identifies risks and challenges that are, or could be, slowing down overall MI mainstream adoption and innovation efforts, and discusses potential solutions to address these limitations. All these aspects are explored through the lens of smart applications. The book navigates the landscape of the most recent, prominent, and impactful MI smart applications. The broad set of smart applications for MI is organized into four themes covering all areas of the economy and social life, namely (i) Smart Environment, (ii) Smart Social Living, (iii) Smart Business and Manufacturing, and (iv) Smart Government. The book examines not only present smart applications but also takes a look at how MI may potentially be applied in the future. This book is aimed at researchers and postgraduate students in applied artificial intelligence and allied technologies. The book is also valuable for practitioners, and it serves as a bridge between researchers and practitioners. It also helps connect researchers interested in MI technologies who come from different social and business disciplines and who can benefit from sharing ideas and results.
Machine Intelligence, Tools, and Applications: Proceedings of the International Conference on Machine Intelligence, Tools, and Applications—ICMITA 2024 (Learning and Analytics in Intelligent Systems #40)
by Satchidananda Dehuri Ashish Ghosh Sung-Bae Cho Venkat Prasad Padhy Poonkuntrun ShanmugamThis book presents the recent advances including tools and techniques in the constantly changing landscape of machine learning (ML). This would enable the readers with a strong understanding of critical issues in ML by providing both broad and detailed perspectives on cutting-edge theories, algorithms, and tools. This will become a single source of reference on conceptual, methodological, technical, and managerial issues, as well as provide insight into emerging trends and future opportunities in the discipline of ML. This book contains altogether 36 chapters in the area of ML and its applications.
Machine Intelligence: Computer Vision and Natural Language Processing
by Pethuru Raj P. Beaulah Soundarabai D. Peter AugustineMachines are being systematically empowered to be interactive and intelligent in their operations, offerings. and outputs. There are pioneering Artificial Intelligence (AI) technologies and tools. Machine and Deep Learning (ML/DL) algorithms, along with their enabling frameworks, libraries, and specialized accelerators, find particularly useful applications in computer and machine vision, human machine interfaces (HMIs), and intelligent machines. Machines that can see and perceive can bring forth deeper and decisive acceleration, automation, and augmentation capabilities to businesses as well as people in their everyday assignments. Machine vision is becoming a reality because of advancements in the computer vision and device instrumentation spaces. Machines are increasingly software-defined. That is, vision-enabling software and hardware modules are being embedded in new-generation machines to be self-, surroundings, and situation-aware.Machine Intelligence: Computer Vision and Natural Language Processing emphasizes computer vision and natural language processing as drivers of advances in machine intelligence. The book examines these technologies from the algorithmic level to the applications level. It also examines the integrative technologies enabling intelligent applications in business and industry.Features: Motion images object detection over voice using deep learning algorithms Ubiquitous computing and augmented reality in HCI Learning and reasoning in Artificial Intelligence Economic sustainability, mindfulness, and diversity in the age of artificial intelligence and machine learning Streaming analytics for healthcare and retail domains Covering established and emerging technologies in machine vision, the book focuses on recent and novel applications and discusses state-of-the-art technologies and tools.
Machine Learning
by Jason BellDig deep into the data with a hands-on guide to machine learningMachine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference.At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to:Learn the languages of machine learning including Hadoop, Mahout, and WekaUnderstand decision trees, Bayesian networks, and artificial neural networksImplement Association Rule, Real Time, and Batch learningDevelop a strategic plan for safe, effective, and efficient machine learningBy learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.
Machine Learning
by Zhi-Hua ZhouMachine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from the fundamentals to advanced topics. It consists of 16 chapters divided into three parts: Part 1 (Chapters 1-3) introduces the fundamentals of machine learning, including terminology, basic principles, evaluation, and linear models; Part 2 (Chapters 4-10) presents classic and commonly used machine learning methods, such as decision trees, neural networks, support vector machines, Bayesian classifiers, ensemble methods, clustering, dimension reduction and metric learning; Part 3 (Chapters 11-16) introduces some advanced topics, covering feature selection and sparse learning, computational learning theory, semi-supervised learning, probabilistic graphical models, rule learning, and reinforcement learning. Each chapter includes exercises and further reading, so that readers can explore areas of interest. The book can be used as an undergraduate or postgraduate textbook for computer science, computer engineering, electrical engineering, data science, and related majors. It is also a useful reference resource for researchers and practitioners of machine learning.
Machine Learning Algorithm for Fatigue Fields in Additive Manufacturing (Werkstofftechnische Berichte │ Reports of Materials Science and Engineering)
by Mustafa Mamduh Mustafa AwdFatigue failure of structures used in transportation, industry, medical equipment, and electronic components needs to build a link between cutting-edge experimental characterization and probabilistically grounded numerical and artificially intelligent tools. The physics involved in this process chain is computationally prohibitive to comprehend using traditional computation methods. Using machine learning and Bayesian statistics, a defect-correlated estimate of fatigue strength was developed. Fatigue, which is a random variable, is studied in a Bayesian-based machine learning algorithm. The stress-life model was used based on the compatibility condition of life and load distributions. The defect-correlated assessment of fatigue strength was established using the proposed machine learning and Bayesian statistics algorithms. It enabled the mapping of structural and process-induced fatigue characteristics into a geometry-independent load density chart across a wide range of fatigue regimes.
Machine Learning Algorithms and Applications
by Prasenjit Chatterjee Mettu Srinivas G. Sucharitha Anjanna MattaMachine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.