Browse Results

Showing 47,301 through 47,325 of 63,034 results

Python Graphics: A Reference for Creating 2D and 3D Images

by Bernard Korites

This book shows how to use Python’s built-in graphics primitives - points, lines, and arrows – to create complex graphics for the visualization of two- and three-dimensional objects, data sets, and technical illustrations. This updated edition provides more detailed explanations where required, especially regarding Python code, and explores scientific applications to topics of contemporary importance. You’ll learn how to create any 2D or 3D object or illustration, as well as how to display images, use color, translate, rotate, shade, add shadows that are cast on other objects, remove hidden lines, plot 2D and 3D data, fit lines and curves to data sets, display points of intersection between 2D and 3D objects, and create digital art. Demonstrations are included which illustrate graphics programming techniques by example, the best way to learn a language. Also brand new to this edition are demonstrations on how to visualize electron probability clouds around a nucleus, climate change, ecological diversity, population dynamics, and resource management. Python source code, including detailed explanations, is included for all applications, making the book more accessible to novice Python programmers. After completing this book, you will be able to create compelling graphic images without being limited to functions available in existing Python libraries. What You Will Learn Create 2D and 3D graphic imagesAdd text and symbols to imagesShade 3D objectsDisplay cast shadowsUse color for maximum effectView 2D and 3D data setsFit lines and curves to data sets Who This Book Is For Python developers, scientists, engineers, and students who use Python to produce technical illustrations and display and analyze data sets. Assumes familiarity with vectors, matrices, geometry and trigonometry.

Python High Performance - Second Edition

by Gabriele Lanaro

Learn how to use Python to create efficient applications About This Book • Identify the bottlenecks in your applications and solve them using the best profiling techniques • Write efficient numerical code in NumPy, Cython, and Pandas • Adapt your programs to run on multiple processors and machines with parallel programming Who This Book Is For The book is aimed at Python developers who want to improve the performance of their application. Basic knowledge of Python is expected What You Will Learn • Write efficient numerical code with the NumPy and Pandas libraries • Use Cython and Numba to achieve native performance • Find bottlenecks in your Python code using profilers • Write asynchronous code using Asyncio and RxPy • Use Tensorflow and Theano for automatic parallelism in Python • Set up and run distributed algorithms on a cluster using Dask and PySpark In Detail Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language. Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications. The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. By the end of the book, readers will have learned to achieve performance and scale from their Python applications. Style and approach A step-by-step practical guide filled with real-world use cases and examples

Python High Performance Programming

by Gabriele Lanaro

An exciting, easy-to-follow guide illustrating the techniques to boost the performance of Python code, and their applications with plenty of hands-on examples.If you are a programmer who likes the power and simplicity of Python and would like to use this language for performance-critical applications, this book is ideal for you. All that is required is a basic knowledge of the Python programming language. The book will cover basic and advanced topics so will be great for you whether you are a new or a seasoned Python developer.

Python How-To: 63 techniques to improve your Python code

by Yong Cui

Have you ever asked yourself, &“How do I do that in Python?&” If so, you&’ll love this practical collection of the most important Python techniques.Python How-To includes over 60 detailed answers to questions like: How do I join and split strings? How do I access dictionary keys, values, and items? How do I set and use the return value in function calls? How do I process JSON data? How do I create lazy attributes to improve performance? How do I change variables in a different namespace? …and much more Python How-To walks you through the most important coding techniques in Python. Whether you&’re doing data science, building web applications, or writing admin scripts, you&’ll find answers to your &“how-to&” questions in this book. Inside you&’ll find important insights into both Python basics and deep-dive topics to help you skill-up at any stage of your Python career. Author Yong Cui&’s clear and practical writing is instantly accessible and makes it easy to take advantage of Python&’s versatile tools and libraries. Perfect to be read both from cover to cover, and whenever you need help troubleshooting your code. About the Technology Python How-To uses a simple but powerful method to lock in 63 core Python skills. You&’ll start with a question, like &“How do I find items in a sequence?&” Next, you&’ll see an example showing the basic solution in crystal-clear code. You&’ll then explore interesting variations, such as finding substrings or identifying custom classes. Finally, you&’ll practice with a challenge exercise before moving on to the next How-To. About the Book This practical guide covers all the language features you&’ll need to get up and running with Python. As you go, you&’ll explore best practices for writing great Python code. Practical suggestions and engaging graphics make each important technique come to life. Author Yong Cui&’s careful cross-referencing reveals how you can reuse features and concepts in different contexts. What&’s Inside How to: Join and split strings Access dictionary keys, values, and items Set and use the return value in function calls Process JSON data Create lazy attributes to improve performance Change variables in a different namespace …and much more. About the Reader For beginning to intermediate Python programmers. About the Author Dr. Yong Cui has been working with Python in bioscience for data analysis, machine learning, and tool development for over 15 years. Table of Contents 1 Developing a pragmatic learning strategy PART 1 - USING BUILT-IN DATA MODELS 2 Processing and formatting strings 3 Using built-in data containers 4 Dealing with sequence data 5 Iterables and iterations PART 2 - DEFINING FUNCTIONS 6 Defining user-friendly functions 7 Using functions beyond the basics PART 3 - DEFINING CLASSES 8 Defining user-friendly classes 9 Using classes beyond the basics PART 4 - MANIPULATING OBJECTS AND FILES 10 Fundamentals of objects 11 Dealing with files PART 5 - SAFEGUARDING THE CODEBASE 12 Logging and exception handling 13 Debugging and testing PART 6 - BUILDING A WEB APP 14 Completing a real project

Python Image Processing Cookbook: Over 60 recipes to help you perform complex image processing and computer vision tasks with ease

by Sandipan Dey

Explore Keras, scikit-image, open source computer vision (OpenCV), Matplotlib, and a wide range of other Python tools and frameworks to solve real-world image processing problems Key Features Discover solutions to complex image processing tasks using Python tools such as scikit-image and Keras Learn popular concepts such as machine learning, deep learning, and neural networks for image processing Explore common and not-so-common challenges faced in image processing Book Description With the advancements in wireless devices and mobile technology, there's increasing demand for people with digital image processing skills in order to extract useful information from the ever-growing volume of images. This book provides comprehensive coverage of the relevant tools and algorithms, and guides you through analysis and visualization for image processing. With the help of over 60 cutting-edge recipes, you'll address common challenges in image processing and learn how to perform complex tasks such as object detection, image segmentation, and image reconstruction using large hybrid datasets. Dedicated sections will also take you through implementing various image enhancement and image restoration techniques, such as cartooning, gradient blending, and sparse dictionary learning. As you advance, you'll get to grips with face morphing and image segmentation techniques. With an emphasis on practical solutions, this book will help you apply deep learning techniques such as transfer learning and fine-tuning to solve real-world problems. By the end of this book, you'll be proficient in utilizing the capabilities of the Python ecosystem to implement various image processing techniques effectively. What you will learn Implement supervised and unsupervised machine learning algorithms for image processing Use deep neural network models for advanced image processing tasks Perform image classification, object detection, and face recognition Apply image segmentation and registration techniques on medical images to assist doctors Use classical image processing and deep learning methods for image restoration Implement text detection in images using Tesseract, the optical character recognition (OCR) engine Understand image enhancement techniques such as gradient blending Who this book is for This book is for image processing engineers, computer vision engineers, software developers, machine learning engineers, or anyone who wants to become well-versed with image processing techniques and methods using a recipe-based approach. Although no image processing knowledge is expected, prior Python coding experience is necessary to understand key concepts covered in the book.

Python Interviews: Discussions with Python Experts

by Michael Driscoll

Mike Driscoll takes you on a journey talking to a hall-of-fame list of truly remarkable Python experts. You’ll be inspired every time by their passion for the Python language, as they share with you their experiences, contributions, and careers in Python. Key Features Hear from these key Python thinkers about the current status of Python, and where it's heading in the future Listen to their close thoughts on significant Python topics, such as Python's role in scientific computing, and machine learning Understand the direction of Python, and what needs to change for Python 4 Book Description Each of these twenty Python Interviews can inspire and refresh your relationship with Python and the people who make Python what it is today. Let these interviews spark your own creativity, and discover how you also have the ability to make your mark on a thriving tech community. This book invites you to immerse in the Python landscape, and let these remarkable programmers show you how you too can connect and share with Python programmers around the world. Learn from their opinions, enjoy their stories, and use their tech tips. Brett Cannon - former director of the PSF, Python core developer, led the migration to Python 3. Steve Holden - tireless Python promoter and former chairman and director of the PSF. Carol Willing - former director of the PSF and Python core developer, Project Jupyter Steering Council member. Nick Coghlan - founding member of the PSF and Python core developer. Jessica McKellar - former director of the PSF and Python activist. Marc-André Lemburg - Python core developer and founding member of the PSF. Glyph Lefkowitz - founder of Twisted and fellow of the PSF Doug Hellmann - fellow of the PSF, creator of the Python Module of the Week blog, Python community member since 1998. Massimo Di Pierro - fellow of the PSF, data scientist and the inventor of web2py. Alex Martelli - fellow of the PSF and co-author of Python in a Nutshell. Barry Warsaw - fellow of the PSF, Python core developer since 1995, and original member of PythonLabs. Tarek Ziadé - founder of Afpy and author of Expert Python Programming. Sebastian Raschka - data scientist and author of Python Machine Learning. Wesley Chun - fellow of the PSF and author of the Core Python Programming books. Steven Lott - Python blogger and author of Python for Secret Agents. Oliver Schoenborn - author of Pypubsub and wxPython mailing list contributor. Al Sweigart - bestselling author and creator of the Python modules Pyperclip and PyAutoGUI. Luciano Ramalho - fellow of the PSF and the author of Fluent Python. Mike Bayer - fellow of the PSF, creator of open source libraries including SQLAlchemy. Jake Vanderplas - data scientist and author of Python Data Science Handbook. What you will learn How successful programmers think The history of Python Insights into the minds of the Python core team Trends in Python programmingWho this book is for Python programmers and students interested in the way that Python is used – past and present – with useful anecdotes. It will also be of interest to those looking to gain insights from top programmers.

Python Machine Learning

by Sebastian Raschka

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book * Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization * Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms * Ask - and answer - tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning - whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn * Explore how to use different machine learning models to ask different questions of your data * Learn how to build neural networks using Pylearn 2 and Theano * Find out how to write clean and elegant Python code that will optimize the strength of your algorithms * Discover how to embed your machine learning model in a web application for increased accessibility * Predict continuous target outcomes using regression analysis * Uncover hidden patterns and structures in data with clustering * Organize data using effective pre-processing techniques * Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data - its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Pylearn2, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Python Machine Learning

by Wei-Meng Lee

Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.

Python Machine Learning - Second Edition

by Sebastian Raschka Vahid Mirjalili

Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book • Second edition of the bestselling book on Machine Learning • A practical approach to key frameworks in data science, machine learning, and deep learning • Use the most powerful Python libraries to implement machine learning and deep learning • Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn • Understand the key frameworks in data science, machine learning, and deep learning • Harness the power of the latest Python open source libraries in machine learning • Explore machine learning techniques using challenging real-world data • Master deep neural network implementation using the TensorFlow library • Learn the mechanics of classification algorithms to implement the best tool for the job • Predict continuous target outcomes using regression analysis • Uncover hidden patterns and structures in data with clustering • Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

Python Machine Learning Blueprints - Second Edition: Put your machine learning concepts to the test by developing real-world smart projects, 2nd Edition

by Alexander Combs

This book is for machine learning practitioners, data scientists, and deep learning enthusiasts who want to take their machine learning skills to the next level by building real-world projects. Implement libraries from Python ecosystem to build a range of projects addressing various machine learning domains. Knowledge of Python programming language and machine learning concepts are recommended.

Python Machine Learning Blueprints: Intuitive data projects you can relate to

by Alexander T. Combs

An approachable guide to applying advanced machine learning methods to everyday problems About This Book * Put machine learning principles into practice to solve real-world problems * Get to grips with Python's impressive range of Machine Learning libraries and frameworks * From retrieving data from APIs to cleaning and visualization, become more confident at tackling every stage of the data pipeline Who This Book Is For Python programmers and data scientists - put your skills to the test with this practical guide dedicated to real-world machine learning that makes a real impact. What You Will Learn * Explore and use Python's impressive machine learning ecosystem * Successfully evaluate and apply the most effective models to problems * Learn the fundamentals of NLP - and put them into practice * Visualize data for maximum impact and clarity * Deploy machine learning models using third party APIs * Get to grips with feature engineering In Detail Machine Learning is transforming the way we understand and interact with the world around us. But how much do you really understand it? How confident are you interacting with the tools and models that drive it? Python Machine Learning Blueprints puts your skills and knowledge to the test, guiding you through the development of some awesome machine learning applications and algorithms with real-world examples that demonstrate how to put concepts into practice. You'll learn how to use cluster techniques to discover bargain air fares, and apply linear regression to find yourself a cheap apartment - and much more. Everything you learn is backed by a real-world example, whether its data manipulation or statistical modelling. That way you're never left floundering in theory - you'll be simply collecting and analyzing data in a way that makes a real impact. Style and approach Packed with real-world projects, this book takes you beyond the theory to demonstrate how to apply machine learning techniques to real problems.

Python Machine Learning By Example - Second Edition: Implement machine learning algorithms and techniques to build intelligent systems, 2nd Edition

by Yuxi (Hayden) Liu

This book is for Machine Learning Aspirants, Data Analysts, Data Engineers who are highly passionate about Machine Learning and wants to start getting employed in Machine Learning assignments. Prior knowledge of python coding is assumed and basic familiarity with the statistical concept is beneficial although not a mandate

Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn, 3rd Edition

by Yuxi (Hayden) Liu

A comprehensive guide to get you up to speed with the latest developments of practical machine learning with Python and upgrade your understanding of machine learning (ML) algorithms and techniquesKey FeaturesDive into machine learning algorithms to solve the complex challenges faced by data scientists todayExplore cutting edge content reflecting deep learning and reinforcement learning developmentsUse updated Python libraries such as TensorFlow, PyTorch, and scikit-learn to track machine learning projects end-to-endBook DescriptionPython Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML).With six new chapters, on topics including movie recommendation engine development with Naive Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements.At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries.Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP.By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.What you will learnUnderstand the important concepts in ML and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text analysis and NLP using Python libraries such NLTK and GensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow 2, PyTorch, and scikit-learnWho this book is forIf you're a machine learning enthusiast, data analyst, or data engineer highly passionate about machine learning and want to begin working on machine learning assignments, this book is for you.Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial, although this is not necessary.

Python Machine Learning By Example: Implement Machine Learning Algorithms And Techniques To Build Intelligent Systems, 2nd Edition

by Yuxi Hayden Liu

Take tiny steps to enter the big world of data science through this interesting guide About This Book • Learn the fundamentals of machine learning and build your own intelligent applications • Master the art of building your own machine learning systems with this example-based practical guide • Work with important classification and regression algorithms and other machine learning techniques Who This Book Is For This book is for anyone interested in entering the data science stream with machine learning. Basic familiarity with Python is assumed. What You Will Learn • Exploit the power of Python to handle data extraction, manipulation, and exploration techniques • Use Python to visualize data spread across multiple dimensions and extract useful features • Dive deep into the world of analytics to predict situations correctly • Implement machine learning classification and regression algorithms from scratch in Python • Be amazed to see the algorithms in action • Evaluate the performance of a machine learning model and optimize it • Solve interesting real-world problems using machine learning and Python as the journey unfolds In Detail Data science and machine learning are some of the top buzzwords in the technical world today. A resurging interest in machine learning is due to the same factors that have made data mining and Bayesian analysis more popular than ever. This book is your entry point to machine learning. This book starts with an introduction to machine learning and the Python language and shows you how to complete the setup. Moving ahead, you will learn all the important concepts such as, exploratory data analysis, data preprocessing, feature extraction, data visualization and clustering, classification, regression and model performance evaluation. With the help of various projects included, you will find it intriguing to acquire the mechanics of several important machine learning algorithms – they are no more obscure as they thought. Also, you will be guided step by step to build your own models from scratch. Toward the end, you will gather a broad picture of the machine learning ecosystem and best practices of applying machine learning techniques. Through this book, you will learn to tackle data-driven problems and implement your solutions with the powerful yet simple language, Python. Interesting and easy-to-follow examples, to name some, news topic classification, spam email detection, online ad click-through prediction, stock prices forecast, will keep you glued till you reach your goal. Style and approach This book is an enticing journey that starts from the very basics and gradually picks up pace as the story unfolds. Each concept is first succinctly defined in the larger context of things, followed by a detailed explanation of their application. Every concept is explained with the help of a project that solves a real-world problem, and involves hands-on work—giving you a deep insight into the world of machine learning. With simple yet rich language—Python—you will understand and be able to implement the examples with ease.

Python Machine Learning By Example: Unlock machine learning best practices with real-world use cases

by Yuxi (Hayden) Liu

Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandasKey FeaturesDiscover new and updated content on NLP transformers, PyTorch, and computer vision modelingIncludes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutionsImplement ML models, such as neural networks and linear and logistic regression, from scratchPurchase of the print or Kindle book includes a free PDF copyBook DescriptionThe fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You’ll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.What you will learnFollow machine learning best practices throughout data preparation and model developmentBuild and improve image classifiers using convolutional neural networks (CNNs) and transfer learningDevelop and fine-tune neural networks using TensorFlow and PyTorchAnalyze sequence data and make predictions using recurrent neural networks (RNNs), transformers, and CLIPBuild classifiers using support vector machines (SVMs) and boost performance with PCAAvoid overfitting using regularization, feature selection, and moreWho this book is forThis expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project.

Python Machine Learning Case Studies

by Danish Haroon

Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You'll see machine learning techniques that you can use to support your products and services. Moreover you'll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs. By taking a step-by-step approach to coding in Python you'll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems. What You Will Learn Gain insights into machine learning concepts Work on real-world applications of machine learning Learn concepts of model selection and optimization Get a hands-on overview of Python from a machine learning point of view Who This Book Is For Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Python Machine Learning Cookbook

by Prateek Joshi

This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code.

Python Machine Learning Cookbook: Over 100 recipes to progress from smart data analytics to deep learning using real-world datasets, 2nd Edition

by Prateek Joshi Giuseppe Ciaburro

Discover powerful ways to effectively solve real-world machine learning problems using key libraries including scikit-learn, TensorFlow, and PyTorch Key Features Learn and implement machine learning algorithms in a variety of real-life scenarios Cover a range of tasks catering to supervised, unsupervised and reinforcement learning techniques Find easy-to-follow code solutions for tackling common and not-so-common challenges Book Description This eagerly anticipated second edition of the popular Python Machine Learning Cookbook will enable you to adopt a fresh approach to dealing with real-world machine learning and deep learning tasks. With the help of over 100 recipes, you will learn to build powerful machine learning applications using modern libraries from the Python ecosystem. The book will also guide you on how to implement various machine learning algorithms for classification, clustering, and recommendation engines, using a recipe-based approach. With emphasis on practical solutions, dedicated sections in the book will help you to apply supervised and unsupervised learning techniques to real-world problems. Toward the concluding chapters, you will get to grips with recipes that teach you advanced techniques including reinforcement learning, deep neural networks, and automated machine learning. By the end of this book, you will be equipped with the skills you need to apply machine learning techniques and leverage the full capabilities of the Python ecosystem through real-world examples. What you will learn Use predictive modeling and apply it to real-world problems Explore data visualization techniques to interact with your data Learn how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Get well versed with reinforcement learning, automated ML, and transfer learning Work with image data and build systems for image recognition and biometric face recognition Use deep neural networks to build an optical character recognition system Who this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and Python programmers who want to solve real-world challenges using machine-learning techniques and algorithms. If you are facing challenges at work and want ready-to-use code solutions to cover key tasks in machine learning and the deep learning domain, then this book is what you need. Familiarity with Python programming and machine learning concepts will be useful.

Python Machine Learning Second Edition

by Sebastian Raschka Vahid Mirjalili

Unlock modern machine learning and deep learning techniques with Python by using the latest cutting-edge open source Python libraries. About This Book Second edition of the bestselling book on Machine Learning A practical approach to key frameworks in data science, machine learning, and deep learning Use the most powerful Python libraries to implement machine learning and deep learning Get to know the best practices to improve and optimize your machine learning systems and algorithms Who This Book Is For If you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential and unmissable resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for developers and data scientists who want to teach computers how to learn from data. What You Will Learn Understand the key frameworks in data science, machine learning, and deep learning Harness the power of the latest Python open source libraries in machine learning Explore machine learning techniques using challenging real-world data Master deep neural network implementation using the TensorFlow library Learn the mechanics of classification algorithms to implement the best tool for the job Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Delve deeper into textual and social media data using sentiment analysis In Detail Machine learning is eating the software world, and now deep learning is extending machine learning. Understand and work at the cutting edge of machine learning, neural networks, and deep learning with this second edition of Sebastian Raschka's bestselling book, Python Machine Learning. Thoroughly updated using the latest Python open source libraries, this book offers the practical knowledge and techniques you need to create and contribute to machine learning, deep learning, and modern data analysis. Fully extended and modernized, Python Machine Learning Second Edition now includes the popular TensorFlow deep learning library. The scikit-learn code has also been fully updated to include recent improvements and additions to this versatile machine learning library. Sebastian Raschka and Vahid Mirjalili's unique insight and expertise introduce you to machine learning and deep learning algorithms from scratch, and show you how to apply them to practical industry challenges using realistic and interesting examples. By the end of the book, you'll be ready to meet the new data analysis opportunities in today's world. If you've read the first edition of this book, you'll be delighted to find a new balance of classical ideas and modern insights into machine learning. Every chapter has been critically updated, and there are new chapters on key technologies. You'll be able to learn and work with TensorFlow more deeply than ever before, and get essential coverage of the Keras neural network library, along with the most recent updates to scikit-learn. Style and Approach Python Machine Learning Second Edition takes a practical, hands-on coding approach so you can learn about machine learning by coding with Python. This book moves fluently between the theoretical principles of machine learning and the practical details of implementation with Python.

Python Machine Learning Workbook for Beginners: 10 Machine Learning Projects Explained from Scratch

by AI Sciences OU

A practical guide to machine learning with Python through the presentation and guided completion of ten real-world projectsKey FeaturesStep-by-step roadmap to data science and machine learningA Python crash course in machine learning10 machine learning and data science projects for practical studyBook DescriptionMachine Learning (ML) is the lifeblood of businesses worldwide. ML tools empower organizations to identify profitable opportunities fast and help them to better understand potential risks. The ever-expanding data, cost-effective data storage, and competitively priced powerful processing continue to drive the growth of ML. This is the best time you could enter the exciting machine learning universe. Industries are reinventing themselves constantly by developing more advanced data analysis models. These models analyze larger and more complex data than ever while delivering instantaneous and more accurate results on enormous scales. In this backdrop, it is evident that hands-on practice is everything in machine learning. Tons of theory will amount to nothing if you don't have enough hands-on practice. Textbooks and online classes mislead you into a false sense of mastery. The easy availability of learning resources tricks you and you become overconfident. But when you try to apply the theoretical concepts you have learned, you realize it's not that simple. This is where projects play a crucial role in your learning journey. Projects are doubtless the best investment of your time. You'll not only enjoy learning but you'll also make quick progress. And unlike studying boring theoretical concepts, you'll find that working on projects is easier to stay motivated. The projects in this book cover ten different interesting topics. Each project will help you refine your ML skills and apply them in the real world. These projects also present you with an opportunity to enrich your portfolio, making it simpler to find a great job, explore interesting career paths, and even negotiate a higher pay package. Overall, this learning-by-doing book will help you accomplish your machine learning career goals faster. The code bundle for this course is available at https://www.aispublishing.net/ai-sciences-bookWhat you will learnHouse price prediction using linear regressionFiltering spam email messages using Naive Bayes algorithmPredicting used car sale price using Feedforward Artificial Neural NetworksPredicting stock market trends with RNN (LSTM)Language translation using Seq2Seq encoder-decoder LSTMClassifying cats and dogs images using Convolutional Neural NetworksMovie recommender system using item-based collaborative filteringFace detection with OpenCV in PythonHandwritten English character recognition with CNNCustomer segmentation based on income and spendingWho this book is forThe scripts, images, and graphs are clear and provide visuals to the text description. If you're new to ML and self-study is your only option, then this book is a must.

Python Machine Learning for Beginners: Learn Machine Learning from scratch with Python

by AI Sciences OU

This course lays the foundations for both a theoretical and practical understanding of machine learning and artificial intelligence, utilizing Python as a beginner-friendly introduction and invitation to further studyKey FeaturesA crash course in Python programmingInteractive, guided practice through a series of machine learning exercisesInstant access to PDFs, Python codes, and exercises from the publisher's website at no extra costBook DescriptionMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay. Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing, and sales. You name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future. But what does a machine learning professional do? A machine learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast. You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science. Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques. By the end of this course, you will have a firm grasp on the theoretical foundations of machine learning and artificial intelligence as well as having explored and practiced various real-world applications through Python. The code bundle for this course is available at https://www.aispublishing.net/nlp-crash-course1603576259757What you will learnGet up to speed with Python programmingExplore Python NumPy and Pandas libraries for data analysisPractice data visualization via Matplotlib, Seaborn, and Pandas librariesSolve regression problems in ML using Sklearn librarySolve classification problems in ML using Sklearn libraryStudy data clustering with ML using Sklearn libraryCover deep learning with Python TensorFlow 2.0Perform dimensionality reduction with PCA and LDA using SklearnWho this book is forThis course is specifically designed for those students interested in studying machine learning from its theoretical foundations to advanced applications with Python. No prior experience is required.

Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition

by Sebastian Raschka Vahid Mirjalili

Applied machine learning with a solid foundation in theory. Revised and expanded for TensorFlow 2, GANs, and reinforcement learning.Key FeaturesThird edition of the bestselling, widely acclaimed Python machine learning bookClear and intuitive explanations take you deep into the theory and practice of Python machine learningFully updated and expanded to cover TensorFlow 2, Generative Adversarial Network models, reinforcement learning, and best practicesBook DescriptionPython Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself.Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents.This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learnMaster the frameworks, models, and techniques that enable machines to 'learn' from dataUse scikit-learn for machine learning and TensorFlow for deep learningApply machine learning to image classification, sentiment analysis, intelligent web applications, and moreBuild and train neural networks, GANs, and other modelsDiscover best practices for evaluating and tuning modelsPredict continuous target outcomes using regression analysisDig deeper into textual and social media data using sentiment analysisWho This Book Is ForIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.

Python Microservices Development

by Tarek Ziade

A practical approach to conquering the complexities of Microservices using the Python tooling ecosystem About This Book • A very useful guide for Python developers who are shifting to the new microservices-based development • A concise, up-to-date guide to building efficient and lightweight microservices in Python using Flask, Tox, and other tools • Learn to use Docker containers, CoreOS, and Amazon Web Services to deploy your services Who This Book Is For This book is for developers who have basic knowledge of Python, the command line, and HTTP-based application principles, and those who want to learn how to build, test, scale, and manage Python 3 microservices. No prior experience of writing microservices in Python is assumed. What You Will Learn • Explore what microservices are and how to design them • Use Python 3, Flask, Tox, and other tools to build your services using best practices • Learn how to use a TDD approach • Discover how to document your microservices • Configure and package your code in the best way • Interact with other services • Secure, monitor, and scale your services • Deploy your services in Docker containers, CoreOS, and Amazon Web Services In Detail We often deploy our web applications into the cloud, and our code needs to interact with many third-party services. An efficient way to build applications to do this is through microservices architecture. But, in practice, it's hard to get this right due to the complexity of all the pieces interacting with each other. This book will teach you how to overcome these issues and craft applications that are built as small standard units, using all the proven best practices and avoiding the usual traps. It's a practical book: you'll build everything using Python 3 and its amazing tooling ecosystem. You will understand the principles of TDD and apply them. You will use Flask, Tox, and other tools to build your services using best practices. You will learn how to secure connections between services, and how to script Nginx using Lua to build web application firewall features such as rate limiting. You will also familiarize yourself with Docker's role in microservices, and use Docker containers, CoreOS, and Amazon Web Services to deploy your services. This book will take you on a journey, ending with the creation of a complete Python application based on microservices. By the end of the book, you will be well versed with the fundamentals of building, designing, testing, and deploying your Python microservices. Style and approach This book is an linear, easy-to-follow guide on how to best design, write, test, and deploy your microservices. It includes real-world examples that will help Python developers create their own Python microservice using the most efficient methods.

Python Microservices Development: Build efficient and lightweight microservices using the Python tooling ecosystem, 2nd Edition

by Tarek Ziade Simon Fraser

Use Python microservices to craft applications that are built as small standard units using proven best practices and avoiding common errorsKey FeaturesBecome well versed with the fundamentals of building, designing, testing, and deploying Python microservicesIdentify where a monolithic application can be split, how to secure it, and how to scale it once ready for deploymentUse the latest framework based on asynchronous programming to write effective microservices with PythonBook DescriptionThe small scope and self-contained nature of microservices make them faster, cleaner, and more scalable than code-heavy monolithic applications. However, building microservices architecture that is efficient as well as lightweight into your applications can be challenging due to the complexity of all the interacting pieces. Python Microservices Development, Second Edition will teach you how to overcome these issues and craft applications that are built as small standard units using proven best practices and avoiding common pitfalls. Through hands-on examples, this book will help you to build efficient microservices using Quart, SQLAlchemy, and other modern Python tools In this updated edition, you will learn how to secure connections between services and how to script Nginx using Lua to build web application firewall features such as rate limiting. Python Microservices Development, Second Edition describes how to use containers and AWS to deploy your services. By the end of the book, you'll have created a complete Python application based on microservices.What you will learnExplore what microservices are and how to design themConfigure and package your code according to modern best practicesIdentify a component of a larger service that can be turned into a microserviceHandle more incoming requests, more effectivelyProtect your application with a proxy or firewallUse Kubernetes and containers to deploy a microserviceMake changes to an API provided by a microservice safely and keep things workingIdentify the factors to look for to get started with an unfamiliar cloud providerWho this book is forThis book is for developers who want to learn how to build, test, scale, and manage Python microservices. Readers will require basic knowledge of the Python programming language, the command line, and HTTP-based application principles. No prior experience of writing microservices in Python is assumed.

Python Multimedia

by Ninad Sathaye

A practical guide, this book provides step-by-step instructions for developing multimedia applications, showcasing real world examples throughout. This book is for Python developers who want to dip their toes into working with images, animations, audio and video processing using Python.

Refine Search

Showing 47,301 through 47,325 of 63,034 results