Browse Results

Showing 13,526 through 13,550 of 28,203 results

Introduction to Proof in Abstract Mathematics

by Andrew Wohlgemuth

The primary purpose of this undergraduate text is to teach students to do mathematical proofs. It enables readers to recognize the elements that constitute an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. The self-contained treatment features many exercises, problems, and selected answers, including worked-out solutions. Starting with sets and rules of inference, this text covers functions, relations, operation, and the integers. Additional topics include proofs in analysis, cardinality, and groups. Six appendixes offer supplemental material. Teachers will welcome the return of this long-out-of-print volume, appropriate for both one- and two-semester courses.

Introduction to Psychometric Theory

by George A. Marcoulides Tenko Raykov

This new text provides a state-of the-art introduction to educational and psychological testing and measurement theory that reflects many intellectual developments of the past two decades. The book introduces psychometric theory using a latent variable modeling (LVM) framework and emphasizes interval estimation throughout, so as to better prepare readers for studying more advanced topics later in their careers. Featuring numerous examples, it presents an applied approach to conducting testing and measurement in the behavioral, social, and educational sciences. Readers will find numerous tips on how to use test theory in today's actual testing situations. To reflect the growing use of statistical software in psychometrics, the authors introduce the use of Mplus after the first few chapters. IBM SPSS, SAS, and R are also featured in several chapters. Software codes and associated outputs are reviewed throughout to enhance comprehension. Essentially all of the data used in the book are available on the website. In addition instructors will find helpful PowerPoint lecture slides and questions and problems for each chapter. The authors rely on LVM when discussing fundamental concepts such as exploratory and confirmatory factor analysis, test theory, generalizability theory, reliability and validity, interval estimation, nonlinear factor analysis, generalized linear modeling, and item response theory. The varied applications make this book a valuable tool for those in the behavioral, social, educational, and biomedical disciplines, as well as in business, economics, and marketing. A brief introduction to R is also provided. Intended as a text for advanced undergraduate and/or graduate courses in psychometrics, testing and measurement, measurement theory, psychological testing, and/or educational and/or psychological measurement taught in departments of psychology, education, human development, epidemiology, business, and marketing, it will also appeal to researchers in these disciplines. Prerequisites include an introduction to statistics with exposure to regression analysis and ANOVA. Familiarity with SPSS, SAS, STATA, or R is also beneficial. As a whole, the book provides an invaluable introduction to measurement and test theory to those with limited or no familiarity with the mathematical and statistical procedures involved in measurement and testing.

Introduction to Python Programming

by Gowrishankar S Veena A

Introduction to Python Programming is written for students who are beginners in the field of computer programming. This book presents an intuitive approach to the concepts of Python Programming for students. This book differs from traditional texts not only in its philosophy but also in its overall focus, level of activities, development of topics, and attention to programming details. The contents of the book are chosen with utmost care after analyzing the syllabus for Python course prescribed by various top universities in USA, Europe, and Asia. Since the prerequisite know-how varies significantly from student to student, the book’s overall overture addresses the challenges of teaching and learning of students which is fine-tuned by the authors’ experience with large sections of students. This book uses natural language expressions instead of the traditional shortened words of the programming world. This book has been written with the goal to provide students with a textbook that can be easily understood and to make a connection between what students are learning and how they may apply that knowledge. <P><P> Features of this book <P><P> This book does not assume any previous programming experience, although of course, any exposure to other programming languages is useful <P><P> This book introduces all of the key concepts of Python programming language with helpful illustrations <P><P> Programming examples are presented in a clear and consistent manner <P><P> Each line of code is numbered and explained in detail <P><P> Use of f-strings throughout the book <P><P> Hundreds of real-world examples are included and they come from fields such as entertainment, sports, music and environmental studies <P><P> Students can periodically check their progress with in-chapter quizzes that appear in all chapters

Introduction to Python Programming for Business and Social Science Applications

by Paul Kaefer Frederick Kaefer

Would you like to gather big datasets, analyze them, and visualize the results, all in one program? If this describes you, then Introduction to Python Programming for Business and Social Science Applications is the book for you. Authors Frederick Kaefer and Paul Kaefer walk you through each step of the Python package installation and analysis process, with frequent exercises throughout so you can immediately try out the functions you’ve learned. Written in straightforward language for those with no programming background, this book will teach you how to use Python for your research and data analysis. Instead of teaching you the principles and practices of programming as a whole, this application-oriented text focuses on only what you need to know to research and answer social science questions. The text features two types of examples, one set from the General Social Survey and one set from a large taxi trip dataset from a major metropolitan area, to help readers understand the possibilities of working with Python. Chapters on installing and working within a programming environment, basic skills, and necessary commands will get you up and running quickly, while chapters on programming logic, data input and output, and data frames help you establish the basic framework for conducting analyses. Further chapters on web scraping, statistical analysis, machine learning, and data visualization help you apply your skills to your research. More advanced information on developing graphical user interfaces (GUIs) help you create functional data products using Python to inform general users of data who don’t work within Python. First there was IBM® SPSS®, then there was R, and now there′s Python. Statistical software is getting more aggressive - let authors Frederick Kaefer and Paul Kaefer help you tame it with Introduction to Python Programming for Business and Social Science Applications.

Introduction to Python Programming for Business and Social Science Applications

by Paul Kaefer Frederick Kaefer

Would you like to gather big datasets, analyze them, and visualize the results, all in one program? If this describes you, then Introduction to Python Programming for Business and Social Science Applications is the book for you. Authors Frederick Kaefer and Paul Kaefer walk you through each step of the Python package installation and analysis process, with frequent exercises throughout so you can immediately try out the functions you’ve learned. Written in straightforward language for those with no programming background, this book will teach you how to use Python for your research and data analysis. Instead of teaching you the principles and practices of programming as a whole, this application-oriented text focuses on only what you need to know to research and answer social science questions. The text features two types of examples, one set from the General Social Survey and one set from a large taxi trip dataset from a major metropolitan area, to help readers understand the possibilities of working with Python. Chapters on installing and working within a programming environment, basic skills, and necessary commands will get you up and running quickly, while chapters on programming logic, data input and output, and data frames help you establish the basic framework for conducting analyses. Further chapters on web scraping, statistical analysis, machine learning, and data visualization help you apply your skills to your research. More advanced information on developing graphical user interfaces (GUIs) help you create functional data products using Python to inform general users of data who don’t work within Python. First there was IBM® SPSS®, then there was R, and now there′s Python. Statistical software is getting more aggressive - let authors Frederick Kaefer and Paul Kaefer help you tame it with Introduction to Python Programming for Business and Social Science Applications.

Introduction to Python and Large Language Models: A Guide to Language Models

by Dilyan Grigorov

Gain a solid foundation for Natural Language Processing (NLP) and Large Language Models (LLMs), emphasizing their significance in today’s computational world. This book is an introductory guide to NLP and LLMs with Python programming. The book starts with the basics of NLP and LLMs. It covers essential NLP concepts, such as text preprocessing, feature engineering, and sentiment analysis using Python. The book offers insights into Python programming, covering syntax, data types, conditionals, loops, functions, and object-oriented programming. Next, it delves deeper into LLMs, unraveling their complex components. You’ll learn about LLM elements, including embedding layers, feedforward layers, recurrent layers, and attention mechanisms. You’ll also explore important topics like tokens, token distributions, zero-shot learning, LLM hallucinations, and insights into popular LLM architectures such as GPT-4, BERT, T5, PALM, and others. Additionally, it covers Python libraries like Hugging Face, OpenAI API, and Cohere. The final chapter bridges theory with practical application, offering step-by-step examples of coded applications for tasks like text generation, summarization, language translation, question-answering systems, and chatbots. In the end, this book will equip you with the knowledge and tools to navigate the dynamic landscape of NLP and LLMs. What You’ll Learn Understand the basics of Python and the features of Python 3.11 Explore the essentials of NLP and how do they lay the foundations for LLMs. Review LLM components. Develop basic apps using LLMs and Python. Who This Book Is For Data analysts, AI and Machine Learning Experts, Python developers, and Software Development Professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks.

Introduction to Python for Humanists (Chapman & Hall/CRC The Python Series)

by William Mattingly

This book will introduce digital humanists at all levels of education to Python. It provides background and guidance on learning the Python computer programming language, and as it presumes no knowledge on the part of the reader about computers or coding concepts allows the reader to gradually learn the more complex tasks that are currently popular in the field of digital humanities. This book will be aimed at undergraduates, graduates, and faculty who are interested in learning how to use Python as a tool within their workflow. An Introduction to Python for Digital Humanists will act as a primer for students who wish to use Python, allowing them to engage with more advanced textbooks. This book fills a real need, as it is first Python introduction to be aimed squarely at humanities students, as other books currently available do not approach Python from a humanities perspective. It will be designed so that those experienced in Python can teach from it, in addition to allowing those who are interested in being self-taught can use it for that purpose.Key Features: Data analysis Data science Computational humanities Digital humanities Python Natural language processing Social network analysis App development

Introduction to Python for Science and Engineering (ISSN)

by David J. Pine

Introduction to Python for Science and Engineering offers a quick and incisive introduction to the Python programming language for use in any science or engineering discipline. The approach is pedagogical and “bottom up,” which means starting with examples and extracting more general principles from that experience. No prior programming experience is assumed.Readers will learn the basics of Python syntax, data structures, input and output, conditionals and loops, user-defined functions, plotting, animation, and visualization. They will also learn how to use Python for numerical analysis, including curve fitting, random numbers, linear algebra, solutions to nonlinear equations, numerical integration, solutions to differential equations, and fast Fourier transforms.Readers learn how to interact and program with Python using JupyterLab and Spyder, two simple and widely used integrated development environments.All the major Python libraries for science and engineering are covered, including NumPy, SciPy, Matplotlib, and Pandas. Other packages are also introduced, including Numba, which can render Python numerical calculations as fast as compiled computer languages such as C but without their complex overhead.

Introduction to Python for Science and Engineering (Series in Computational Physics)

by David Pine

This guide offers a quick and incisive introduction to Python programming for anyone. The author has carefully developed a concise approach to using Python in any discipline of science and engineering, with plenty of examples, practical hints, and insider tips. <p><p>Readers will see why Python is such a widely appealing program, and learn the basics of syntax, data structures, input and output, plotting, conditionals and loops, user-defined functions, curve fitting, numerical routines, animation, and visualization. The author teaches by example and assumes no programming background for the reader. <p><p>David J. Pine is the Silver Professor and Professor of Physics at New York University, and Chair of the Department of Chemical and Biomolecular Engineering at the NYU Tandon School of Engineering. He is an elected fellow of the American Physical Society and American Association for the Advancement of Science (AAAS), and is a Guggenheim Fellow.

Introduction to Python in Earth Science Data Analysis: From Descriptive Statistics to Machine Learning (Springer Textbooks in Earth Sciences, Geography and Environment)

by Maurizio Petrelli

This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book.

Introduction to Python: With Applications in Optimization, Image and Video Processing, and Machine Learning (Chapman & Hall/CRC The Python Series)

by David Báez-López David Alfredo Báez Villegas

Introduction to Python: with Applications in Optimization, Image and Video Processing, and Machine Learning is intended primarily for advanced undergraduate and graduate students in quantitative sciences such as mathematics, computer science, and engineering. In addition to this, the book is written in such a way that it can also serve as a self-contained handbook for professionals working in quantitative fields including finance, IT, and many other industries where programming is a useful or essential tool.The book is written to be accessible and useful to those with no prior experience of Python, but those who are somewhat more adept will also benefit from the more advanced material that comes later in the book.Features Covers introductory and advanced material. Advanced material includes lists, dictionaries, tuples, arrays, plotting using Matplotlib, object-oriented programming Suitable as a textbook for advanced undergraduates or postgraduates, or as a reference for researchers and professionals Solutions manual, code, and additional examples are available for download

Introduction to Qualitative Methods for Differential Equations

by Ronald E. Mickens

Introduction to Qualitative Methods for Differential Equations provides an alternative approach to teaching and understanding differential equations. The basic methodology of the book is centred on finding reformulations of differential equations in such a manner that they become (partially, at least) problems in geometry. Through this approach, the book distils the critical aspects of the qualitative theory of differential equations and illustrates their application to a number of nontrivial problems.Features Self-contained with suggestions for further reading Concise and approachable exposition with only minimal pre-requisites Ideal for self-study Appropriate for undergraduate mathematicians, engineers, and other quantitative science students.

Introduction to Qualitative Research Methods

by Steven J. Taylor Robert Bogdan Marjorie Devault

An informative real-world guide to studying the "why" of human behavior Introduction to Qualitative Research Methods is a practical, comprehensive guide to the collection and presentation of qualitative data. Unique in the market, this book describes the entire research process -- from design through writing -- illustrated by examples of real, complete qualitative work that clearly demonstrates how methods are used in actual practice. This updated third edition includes all new case studies, with additional coverage of mixed methods, non-sociological settings, funding, and a sample interview guide. The studies profiled are accompanied by observation field notes, and the text includes additional readings for both students and instructors. More than just theory, this guide is designed to give you a real-world practitioner's view of how qualitative research is handled every step of the way. Many different disciplines rely on qualitative research as a method of inquiry, to gain an in-depth understanding of human behavior and the governing forces behind it. Qualitative research asks "why" and "how," and the data is frequently complex and difficult to measure. This book shows you how to effectively handle qualitative work, regardless of where it's being applied. Understand the strengths and limitations of qualitative data Learn how experts work around common methodological issues Compare actual field notes to the qualitative studies they generated Examine the full range of qualitative methods throughout the research process Whether you're studying sociology, psychology, marketing, or any number of other fields, especially in the social and behavioral sciences, human behavior is the central concern of your work. So what drives human behavior? That's what qualitative research helps to explain. Introduction to Qualitative Research Methods gives you the foundation you need to begin seeking answers.

Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences

by Michael J. Albers

Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.

Introduction to Quantitative Methods for Financial Markets

by Andreas Binder Hansjoerg Albrecher Volkmar Lautscham Philipp Mayer

Swaps, futures, options, structured instruments - a wide range of derivative products is traded in today's financial markets. Analyzing, pricing and managing such products often requires fairly sophisticated quantitative tools and methods. This book serves as an introduction to financial mathematics with special emphasis on aspects relevant in practice. In addition to numerous illustrative examples, algorithmic implementations are demonstrated using "Mathematica" and the software package "UnRisk" (available for both students and teachers). The content is organized in 15 chapters that can be treated as independent modules. In particular, the exposition is tailored for classroom use in a Bachelor or Master program course, as well as for practitioners who wish to further strengthen their quantitative background.

Introduction to Quantitative Methods in Business: With Applications Using Microsoft Office Excel

by Michael J. Panik Rao N. Singamsetti Bharat Kolluri

A well-balanced and accessible introduction to the elementary quantitative methods and Microsoft® Office Excel® applications used to guide business decision making Featuring quantitative techniques essential for modeling modern business situations, Introduction to Quantitative Methods in Business: With Applications Using Microsoft® Office Excel® provides guidance to assessing real-world data sets using Excel. The book presents a balanced approach to the mathematical tools and techniques with applications used in the areas of business, finance, economics, marketing, and operations. The authors begin by establishing a solid foundation of basic mathematics and statistics before moving on to more advanced concepts. The first part of the book starts by developing basic quantitative techniques such as arithmetic operations, functions and graphs, and elementary differentiations (rates of change), and integration. After a review of these techniques, the second part details both linear and nonlinear models of business activity. Extensively classroom-tested, Introduction to Quantitative Methods in Business: With Applications Using Microsoft® Office Excel® also includes: Numerous examples and practice problems that emphasize real-world business quantitative techniques and applications Excel-based computer software routines that explore calculations for an assortment of tasks, including graphing, formula usage, solving equations, and data analysis End-of-chapter sections detailing the Excel applications and techniques used to address data and solutions using large data sets A companion website that includes chapter summaries, Excel data sets, sample exams and quizzes, lecture slides, and an Instructors' Solutions Manual Introduction to Quantitative Methods in Business: With Applications Using Microsoft® Office Excel® is an excellent textbook for undergraduate-level courses on quantitative methods in business, economics, finance, marketing, operations, and statistics. The book is also an ideal reference for readers with little or no quantitative background who require a better understanding of basic mathematical and statistical concepts used in economics and business. Bharat Kolluri, Ph.D., is Professor of Economics in the Department of Economics, Finance, and Insurance at the University of Hartford. A member of the American Economics Association, his research interests include econometrics, business statistics, quantitative decision making, applied macroeconomics, applied microeconomics, and corporate finance. Michael J. Panik, Ph.D., is Professor Emeritus in the Department of Economics, Finance, and Insurance at the University of Hartford. He has served as a consultant to the Connecticut Department of Motor Vehicles as well as to a variety of health care organizations. In addition, Dr. Panik is the author of numerous books, including Growth Curve Modeling: Theory and Applications and Statistical Inference: A Short Course, both published by Wiley. Rao N. Singamsetti, Ph.D., is Associate Professor in the Department of Economics, Finance, and Insurance at the University of Hartford. A member of the American Economics Association, his research interests include the status of war on poverty in the United States since the 1960s and forecasting foreign exchange rates using econometric methods.

Introduction to Quantitative Social Science with Python (Chapman & Hall/CRC The Python Series)

by Weiqi Zhang Dmitry Zinoviev

Departing from traditional methodologies of teaching data analysis, this book presents a dual-track learning experience, with both Executive and Technical Tracks, designed to accommodate readers with various learning goals or skill levels. Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.Emphasizing the practical relevance of data analysis in today's world, the book equips readers with essential skills for success in the field. By advocating for the use of Python, an open-source and versatile programming language, we break down financial barriers and empower a diverse range of learners to access the tools they need to excel.Whether you're a novice seeking to grasp the foundational concepts of data analysis or a seasoned professional looking to enhance your programming skills, this book offers a comprehensive and accessible guide to mastering the art and science of data analysis in social science research.Key Features: Dual-track learning: Offers both Executive and Technical Tracks, catering to readers with varying levels of conceptual and technical proficiency in data analysis. Includes comprehensive quantitative methodologies for quantitative social science studies. Seamless integration: Interconnects key concepts between tracks, ensuring a smooth transition from theory to practical implementation for a comprehensive learning experience. Emphasis on Python: Focuses on Python programming language, leveraging its accessibility, versatility, and extensive online support to equip readers with valuable data analysis skills applicable across diverse domains.

Introduction to Quantum Control and Dynamics (Advances in Applied Mathematics)

by Domenico D’Alessandro

The introduction of control theory in quantum mechanics has created a rich, new interdisciplinary scientific field, which is producing novel insight into important theoretical questions at the heart of quantum physics. Exploring this emerging subject, Introduction to Quantum Control and Dynamics presents the mathematical concepts and fundamental physics behind the analysis and control of quantum dynamics, emphasizing the application of Lie algebra and Lie group theory. To advantage students, instructors and practitioners, and since the field is highly interdisciplinary, this book presents an introduction with all the basic notions in the same place. The field has seen a large development in parallel with the neighboring fields of quantum information, computation and communication. The author has maintained an introductory level to encourage course use. After introducing the basics of quantum mechanics, the book derives a class of models for quantum control systems from fundamental physics. It examines the controllability and observability of quantum systems and the related problem of quantum state determination and measurement. The author also uses Lie group decompositions as tools to analyze dynamics and to design control algorithms. In addition, he describes various other control methods and discusses topics in quantum information theory that include entanglement and entanglement dynamics. Changes to the New Edition: New Chapter 4: Uncontrollable Systems and Dynamical Decomposition New section on quantum control landscapes A brief discussion of the experiments that earned the 2012 Nobel Prize in Physics Corrections and revised concepts are made to improve accuracy Armed with the basics of quantum control and dynamics, readers will invariably use this interdisciplinary knowledge in their mathematics, physics and engineering work.

Introduction to Quantum Field Theory

by Horatiu Nastase

Quantum Field Theory provides a theoretical framework for understanding fields and the particles associated with them, and is the basis of particle physics and condensed matter research. This graduate level textbook provides a comprehensive introduction to quantum field theory, giving equal emphasis to operator and path integral formalisms. It covers modern research such as helicity spinors, BCFW construction and generalized unitarity cuts; as well as treating advanced topics including BRST quantization, loop equations, and finite temperature field theory. Various quantum fields are described, including scalar and fermionic fields, Abelian vector fields and Quantum ElectroDynamics (QED), and finally non-Abelian vector fields and Quantum ChromoDynamics (QCD). Applications to scattering cross sections in QED and QCD are also described. Each chapter ends with exercises and an important concepts section, allowing students to identify the key aspects of the chapter and test their understanding.

Introduction to Quantum Mechanics: With a Focus on Physics and Operator Theory (Synthesis Lectures on Engineering, Science, and Technology)

by Horst R. Beyer

This book presents an introduction to quantum mechanics that consistently uses the methods of operator theory, allowing readers to develop a physical understanding of quantum mechanical systems. The methods of operator theory are discussed throughout the book and presented with a mathematically rigorous approach. The author describes in detail how to use the methods of operator theory for analyzing quantum mechanical systems, starting with the definition of the involved physical operators (observables) up to the calculation of their spectra, spectral measures, and functional calculus. In addition, the book includes the construction of exponential functions of the involved Hamilton operators that solve the problem of time evolution.

Introduction to Quantum Physics and Information Processing

by Radhika Vathsan

Requiring no background in quantum physics, this text guides beginners in understanding the current state of research in the novel, interdisciplinary area of quantum information. Suitable for undergraduate and beginning graduate students in physics, mathematics, or engineering, the book goes deep into issues of quantum theory without raising the technical level too much. It describes basic algorithms used in quantum computation and addresses key elements of quantum information. Examples, exercises, problems, and references encourage hands-on practice and further exploration.

Introduction to Quasi-Monte Carlo Integration and Applications

by Friedrich Pillichshammer Gunther Leobacher

This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.

Introduction to Queueing Networks: Theory ∩ Practice (Springer Series in Operations Research and Financial Engineering)

by J. MacGregor Smith

The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.

Introduction to Queueing Systems with Telecommunication Applications

by Laszlo Lakatos Miklos Telek Laszlo Szeidl

The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.

Introduction to Queueing Systems with Telecommunication Applications

by László Lakatos László Szeidl Miklós Telek

The book is the extended and revised version of the 1st edition and is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self-containing introduction to the stochastic processes of the later studied queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part.The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems.An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.Reviews of first edition:"The organization of the book is such that queueing models are viewed as special cases of more general stochastic processes, such as birth-death or semi-Markov processes. … this book is a valuable addition to the queuing literature and provides instructors with a viable alternative for a textbook to be used in a one- or two-semester course on queueing models, at the upper undergraduate or beginning graduate levels."Charles Knessl, SIAM Review, Vol. 56 (1), March, 2014

Refine Search

Showing 13,526 through 13,550 of 28,203 results