Browse Results

Showing 13,901 through 13,925 of 23,543 results

Mathematics, Grade 8, Unit 4, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics, Grade 8, Unit 5, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics, Grade 8, Unit 6, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics, Grade 8, Unit 7, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics, Grade 8, Unit 8, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics, Grade 8, Unit 9, Student Workbook

by Illustrative Mathematics

NIMAC-sourced textbook

Mathematics Grade 9

by Siyavula

An open source textbook for South Africa.

Mathematics Homework Workbook (Grade #5)

by Scott Foresman

Daily homework pages for each child in the class.

Mathematics I, Volume 1

by Randall I. Charles Basia Hall Dan Kennedy

NIMAC-sourced textbook

Mathematics I, Volume 2

by Randall I. Charles Basia Hall Dan Kennedy

NIMAC-sourced textbook

Mathematics III, Volume 1

by Randall I. Charles Basia Hall Dan Kennedy

NIMAC-sourced textbook

Mathematics III, Volume 2

by Randall I. Charles Basia Hall Dan Kennedy

NIMAC-sourced textbook

Mathematics in Ancient Egypt

by Annette Imhausen

Mathematics in Ancient Egypt traces the development of Egyptian mathematics, from the end of the fourth millennium BC--and the earliest hints of writing and number notation--to the end of the pharaonic period in Greco-Roman times. Drawing from mathematical texts, architectural drawings, administrative documents, and other sources, Annette Imhausen surveys three thousand years of Egyptian history to present an integrated picture of theoretical mathematics in relation to the daily practices of Egyptian life and social structures.Imhausen shows that from the earliest beginnings, pharaonic civilization used numerical techniques to efficiently control and use their material resources and labor. Even during the Old Kingdom, a variety of metrological systems had already been devised. By the Middle Kingdom, procedures had been established to teach mathematical techniques to scribes in order to make them proficient administrators for their king. Imhausen looks at counterparts to the notation of zero, suggests an explanation for the evolution of unit fractions, and analyzes concepts of arithmetic techniques. She draws connections and comparisons to Mesopotamian mathematics, examines which individuals in Egyptian society held mathematical knowledge, and considers which scribes were trained in mathematical ideas and why. Of interest to historians of mathematics, mathematicians, Egyptologists, and all those curious about Egyptian culture, Mathematics in Ancient Egypt sheds new light on a civilization's unique mathematical evolution.

Mathematics in Ancient Greece (Dover Books on Mathematics)

by Tobias Dantzig

More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led to the development of whole new branches of mathematics.A book that will both instruct and delight the mathematically minded, this volume is also a treat for readers interested in the history of science. Students and teachers of mathematics will particularly appreciate its unusual combination of human interest and sound scholarship.

Mathematics in Ancient Iraq: A Social History

by Eleanor Robson

This monumental book traces the origins and development of mathematics in the ancient Middle East, from its earliest beginnings in the fourth millennium BCE to the end of indigenous intellectual culture in the second century BCE when cuneiform writing was gradually abandoned. Eleanor Robson offers a history like no other, examining ancient mathematics within its broader social, political, economic, and religious contexts, and showing that mathematics was not just an abstract discipline for elites but a key component in ordering society and understanding the world. The region of modern-day Iraq is uniquely rich in evidence for ancient mathematics because its prehistoric inhabitants wrote on clay tablets, many hundreds of thousands of which have been archaeologically excavated, deciphered, and translated. Drawing from these and a wealth of other textual and archaeological evidence, Robson gives an extraordinarily detailed picture of how mathematical ideas and practices were conceived, used, and taught during this period. She challenges the prevailing view that they were merely the simplistic precursors of classical Greek mathematics, and explains how the prevailing view came to be. Robson reveals the true sophistication and beauty of ancient Middle Eastern mathematics as it evolved over three thousand years, from the earliest beginnings of recorded accounting to complex mathematical astronomy. Every chapter provides detailed information on sources, and the book includes an appendix on all mathematical cuneiform tablets published before 2007.

Mathematics in Civilization, Third Edition (Dover Books on Mathematics)

by Raymond O. Wells Jr. Howard L. Resnikoff

Space flight, computers, lasers, and information technology - these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to college-level studies as well as popular reading, the book explores trigonometry, navigation, cartography, logarithms, algebra, and calculus through ancient, medieval, post-Renaissance, and modern times. Solutions to problems appear at the end of each chapter, and this edition has been newly expanded to include a supplement on events in mathematics since the 1985 publication of the first Dover edition. Acclaimed by Telegraphic Reviews as "an exceptionally good liberal arts math text," this highly readable treatment makes a technical subject vividly fascinating.

Mathematics in Computational Science and Engineering

by Ramakant Bhardwaj Jyoti Mishra Satyendra Narayan Gopalakrishnan Suseendran

MATHEMATICS IN COMPUTATIONAL SCIENCE AND ENGINEERING This groundbreaking new volume, written by industry experts, is a must-have for engineers, scientists, and students across all engineering disciplines working in mathematics and computational science who want to stay abreast with the most current and provocative new trends in the industry. Applied science and engineering is the application of fundamental concepts and knowledge to design, build and maintain a product or a process, which provides a solution to a problem and fulfills a need. This book contains advanced topics in computational techniques across all the major engineering disciplines for undergraduate, postgraduate, doctoral and postdoctoral students. This will also be found useful for professionals in an industrial setting. It covers the most recent trends and issues in computational techniques and methodologies for applied sciences and engineering, production planning, and manufacturing systems. More importantly, it explores the application of computational techniques and simulations through mathematics in the field of engineering and the sciences. Whether for the veteran engineer, scientist, student, or other industry professional, this volume is a must-have for any library. Useful across all engineering disciplines, it is a multifactional tool that can be put to use immediately in practical applications. This groundbreaking new volume: Includes detailed theory with illustrations Uses an algorithmic approach for a unique learning experience Presents a brief summary consisting of concepts and formulae Is pedagogically designed to make learning highly effective and productive Is comprised of peer-reviewed articles written by leading scholars, researchers and professors AUDIENCE: Engineers, scientists, students, researchers, and other professionals working in the field of computational science and mathematics across multiple disciplines

Mathematics in Computing: An Accessible Guide to Historical, Foundational and Application Contexts (Undergraduate Topics in Computer Science)

by Gerard O’Regan

This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems.This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction.Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus.This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.

Mathematics in Computing

by Gerard O’regan

This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.

Mathematics in Cyber Research

by Paul L. Goethals

In the last decade, both scholars and practitioners have sought novel ways to address the problem of cybersecurity. Innovative outcomes have included applications such as blockchain as well as creative methods for cyber forensics, software development, and intrusion prevention. Accompanying these technological advancements, discussion on cyber matters at national and international levels has focused primarily on the topics of law, policy, and strategy. The objective of these efforts is typically to promote security by establishing agreements among stakeholders on regulatory activities. Varying levels of investment in cyberspace, however, comes with varying levels of risk; in some ways, this can translate directly to the degree of emphasis for pushing substantial change. At the very foundation or root of cyberspace systems and processes are tenets and rules governed by principles in mathematics. Topics such as encrypting or decrypting file transmissions, modeling networks, performing data analysis, quantifying uncertainty, measuring risk, and weighing decisions or adversarial courses of action represent a very small subset of activities highlighted by mathematics. To facilitate education and a greater awareness of the role of mathematics in cyber systems and processes, a description of research in this area is needed. Mathematics in Cyber Research aims to familiarize educators and young researchers with the breadth of mathematics in cyber-related research. Each chapter introduces a mathematical sub-field, describes relevant work in this field associated with the cyber domain, provides methods and tools, as well as details cyber research examples or case studies. Features One of the only books to bring together such a diverse and comprehensive range of topics within mathematics and apply them to cyber research. Suitable for college undergraduate students or educators that are either interested in learning about cyber-related mathematics or intend to perform research within the cyber domain. The book may also appeal to practitioners within the commercial or government industry sectors. Most national and international venues for collaboration and discussion on cyber matters have focused primarily on the topics of law, policy, strategy, and technology. This book is among the first to address the underpinning mathematics.

Mathematics in Early Years Education

by Alice Hansen Ann Montague-Smith Alison J. Price Tony Cotton

This fourth edition of the bestselling Mathematics in Early Years Education provides an accessible introduction to the teaching of mathematics in the early years. Covering all areas of mathematics – number and counting, calculation, pattern, shape, measures and data handling – it provides a wide range of practical activities and guidance on how to support young children’s mathematical development. There is also guidance on managing the transition to KS1 and a strong emphasis throughout on creating home links and working in partnership with parents. This new edition has been fully updated to incorporate the latest research and thinking in this area and includes: why mathematics is important as a way of making sense of the world how attitudes to mathematics can influence teaching and learning how children learn mathematics and what they are capable of learning how technology can support maths teaching maths phobia and the impact society has on maths teaching material on sorting, matching and handling data the importance of educating about finance in today’s world ideas for observation and questioning to assess children’s understanding examples of planned activities suggestions for language development assessment criteria. This textbook is ideal for those training to be teachers through an undergraduate or PGCE route, those training for Early Years Professional Status and those studying early childhood on foundation or honours degrees, as well as parents looking to explore how their young children learn mathematics. This will be an essential text for any early years practitioner looking to make mathematics interesting, exciting and engaging in their classroom.

Mathematics in Early Years Education

by Ann Montague-Smith Alison J. Price

This third edition of the best-selling Mathematics in Nursery Education provides an accessible introduction to the teaching of mathematics in the early years. Covering all areas of mathematics learning - number and counting, calculation, pattern, shape, measures and data handling - it summarises the research findings and underlying key concepts and explains how adults can help children to learn through practical experiences, discussion and more direct intervention. This new edition has been fully updated to incorporate the latest research and thinking in this area and includes: why mathematics is important as a way of making sense of the world how attitudes to mathematics can influence teaching and learning how children learn mathematics new material on sorting, matching and handling data ideas for observation and questioning to assess children's understanding examples of planned activities suggestions for language development assessment criteria. This textbook is ideal for those training to be teachers through an undergraduate or PGCE route, those training for Early Years Professional Status and those studying early childhood on foundation or honours degrees as well as parents looking to explore how their young children learn mathematics. This will be an essential text for any Early Years practitioner looking to make mathematics interesting, exciting and engaging in their classroom.

Mathematics in Engineering Sciences: Novel Theories, Technologies, and Applications (Mathematical Engineering, Manufacturing, and Management Sciences)

by Mangey Ram

This book includes research studies, novel theory, as well as new methodology and applications in mathematics and management sciences. The book will provide a comprehensive range of mathematics applied to engineering areas for different tasks. It will offer an international perspective and a bridge between classical theory and new methodology in many areas, along with real-life applications. Features Offers solutions to multi-objective transportation problem under cost reliability using utility function Presents optimization techniques to support eco-efficiency assessment in manufacturing processes Covers distance-based function approach for optimal design of engineering processes with multiple quality characteristics Provides discrete time sliding mode control for non-linear networked control systems Discusses Bejan number and second law of thermodynamics as instruments for optimizing fluid dynamic systems and aerodynamic systems

Refine Search

Showing 13,901 through 13,925 of 23,543 results