Browse Results

Showing 14,601 through 14,625 of 28,722 results

Lectures on K3 Surfaces

by Daniel Huybrechts

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin-Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Lectures on Kinetic Processes in Materials

by Han-Ill Yoo

This book provides beginning graduate or senior-level undergraduate students in materials disciplines with a primer of the fundamental and quantitative ideas on kinetic processes in solid materials. Kinetics is concerned with the rate of change of the state of existence of a material system under thermodynamic driving forces. Kinetic processes in materials typically involve chemical reactions and solid state diffusion in parallel or in tandem. Thus, mathematics of diffusion in continuum is first dealt with in some depth, followed by the atomic theory of diffusion and a brief review of chemical reaction kinetics. Chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions are examined. Through this course of learning, a student will become able to predict quantitatively how fast a kinetic process takes place, to understand the inner workings of the process, and to design the optimal process of material state change.Provides students with the tools to predict quantitatively how fast a kinetic process takes place and solve other diffusion related problems;Learns fundamental and quantitative ideas on kinetic processes in solid materials;Examines chemical diffusion in metals and ionic solids, diffusion-controlled kinetics of phase transformations, and kinetics of gas-solid reactions, among others;Contains end-of chapter exercise problems to help reinforce students' grasp of the concepts presented within each chapter.

Lectures on Logarithmic Algebraic Geometry (Cambridge Studies in Advanced Mathematics #178)

by Arthur Ogus

This graduate textbook offers a self-contained introduction to the concepts and techniques of logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry and number theory. It features a systematic exposition of the foundations of the field, from the basic results on convex geometry and commutative monoids to the theory of logarithmic schemes and their de Rham and Betti cohomology. The book will be of use to graduate students and researchers working in algebraic, analytic, and arithmetic geometry as well as related fields.

Lectures on Lyapunov exponents

by Marcelo Viana

The theory of Lyapunov exponents originated over a century ago in the study of the stability of solutions of differential equations. Written by one of the subject's leading authorities, this book is both an account of the classical theory, from a modern view, and an introduction to the significant developments relating the subject to dynamical systems, ergodic theory, mathematical physics and probability. It is based on the author's own graduate course and is reasonably self-contained with an extensive set of exercises provided at the end of each chapter. This book makes a welcome addition to the literature, serving as a graduate text and a valuable reference for researchers in the field.

Lectures on Mappings of Finite Distortion

by Pekka Koskela Stanislav Hencl

In this book we introduce the class of mappings of finite distortion as a generalization of the class of mappings of bounded distortion. Connections with models of nonlinear elasticity are also discussed. We study continuity properties, behavior of our mappings on null sets, topological properties like openness and discreteness, regularity of the potential inverse mappings and many other aspects.

Lectures on Mathematics for Economic and Financial Analysis

by Giorgio Giorgi Bienvenido Jiménez Vicente Novo

This book offers a comprehensive yet approachable introduction to essential mathematical concepts, tailored specifically for undergraduate and first-year graduate students in Economics and Social Sciences. Based on lectures delivered at the University of Pavia's Department of Economics and Management, and also in UNED’ Department of Applied Mathematics in Madrid, it aims to equip students with the mathematical tools necessary to better understand their courses in economics and finance, where math is applied directly. Unlike texts focused on formalized topics like Mathematical Economics or Operations Research, this book presents basic mathematical principles and methods that are immediately relevant to students. With a clear, accessible approach, it includes numerous examples, some with economic applications, to illustrate key concepts and make them easier to grasp. The authors have carefully chosen proofs that are straightforward and beneficial for students to encounter, offering an introduction to important proof techniques without overwhelming complexity. The book also provides a select bibliography, allowing readers to explore topics in greater depth if desired. Drawing on years of teaching experience, the authors have created a valuable resource that serves as both a foundation and a practical guide for students navigating the mathematical aspects of economics and social science courses.

Lectures on Measure and Integration (Dover Books on Mathematics)

by Harold Widom

These well-known and concise lecture notes present the fundamentals of the Lebesgue theory of integration and an introduction to some of the theory's applications. Suitable for advanced undergraduates and graduate students of mathematics, the treatment also covers topics of interest to practicing analysts. Author Harold Widom emphasizes the construction and properties of measures in general and Lebesgue measure in particular as well as the definition of the integral and its main properties. The notes contain chapters on the Lebesgue spaces and their duals, differentiation of measures in Euclidean space, and the application of integration theory to Fourier series.

Lectures on Modular Forms

by Joseph J. Lehner

This concise volume presents an expository account of the theory of modular forms and its application to number theory and analysis. Suitable for advanced undergraduates and graduate students in mathematics, the treatment starts with classical material and leads gradually to modern developments. Prerequisites include a grasp of the elements of complex variable theory, group theory, and number theory. The opening chapters define modular forms, develop their most important properties, and introduce the Hecke modular forms. Subsequent chapters explore the automorphisms of a compact Riemann surface, develop congruences and other arithmetic properties for the Fourier coefficients of Klein's absolute modular invariant, and discuss analogies with the Hecke theory as well as with the Ramanujan congruences for the partition function. Substantial notes at the end of each chapter provide detailed explanations of the text's more difficult points.

Lectures on N_X (Research Notes in Mathematics)

by Jean-Pierre Serre

Lectures on NX(p) deals with the question on how NX(p), the number of solutions of mod p congruences, varies with p when the family (X) of polynomial equations is fixed. While such a general question cannot have a complete answer, it offers a good occasion for reviewing various techniques in l-adic cohomology and group representations, presented in

Lectures on Nonsmooth Differential Geometry (SISSA Springer Series #2)

by Nicola Gigli Enrico Pasqualetto

This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.

Lectures on Nonsmooth Optimization (Texts in Applied Mathematics #82)

by Qinian Jin

This book provides an in-depth exploration of nonsmooth optimization, covering foundational algorithms, theoretical insights, and a wide range of applications. Nonsmooth optimization, characterized by nondifferentiable objective functions or constraints, plays a crucial role across various fields, including machine learning, imaging, inverse problems, statistics, optimal control, and engineering. Its scope and relevance continue to expand, as many real-world problems are inherently nonsmooth or benefit significantly from nonsmooth regularization techniques. This book covers a variety of algorithms for solving nonsmooth optimization problems, which are foundational and recent. It first introduces basic facts on convex analysis and subdifferetial calculus, various algorithms are then discussed, including subgradient methods, mirror descent methods, proximal algorithms, alternating direction method of multipliers, primal dual splitting methods and semismooth Newton methods. Moreover, error bound conditions are discussed and the derivation of linear convergence is illustrated. A particular chapter is delved into first order methods for nonconvex optimization problems satisfying the Kurdyka-Lojasiewicz condition. The book also addresses the rapid evolution of stochastic algorithms for large-scale optimization. This book is written for a wide-ranging audience, including senior undergraduates, graduate students, researchers, and practitioners who are interested in gaining a comprehensive understanding of nonsmooth optimization.

Lectures on Optimal Transport (UNITEXT #130)

by Luigi Ambrosio Elia Brué Daniele Semola

This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.

Lectures on Optimal Transport (UNITEXT #169)

by Luigi Ambrosio Elia Brué Daniele Semola

This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations. This is the second edition of the book, first published in 2018. It includes refinement of proofs, an updated bibliography and a more detailed discussion of minmax principles, with the aim of giving two fully self-contained proofs of Kantorovich duality.

Lectures on Ordinary Differential Equations (Dover Books on Mathematics)

by Witold Hurewicz

Hailed by The American Mathematical Monthly as "a rigorous and lively introduction," this text explores a topic of perennial interest in mathematics. The author, a distinguished mathematician and formulator of the Hurewicz theorem, presents a clear and lucid treatment that emphasizes geometric methods. Topics include first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. Suitable for senior mathematics students, the text begins with an examination of differential equations of the first order in one unknown function. Subsequent chapters address systems of differential equations, linear systems of differential equations, singularities of an autonomous system, and solutions of an autonomous system in the large.

Lectures on Partial Differential Equations

by I. G. Petrovsky

The field of partial differential equations is an extremely important component of modern mathematics. It has great intrinsic beauty and virtually unlimited applications. This book, written for graduate-level students, grew out of a series of lectures the late Professor Petrovsky gave at Moscow State University. The first chapter uses physical problems to introduce the subjects and explains its division into hyperbolic, elliptic, and parabolic partial differential equations. Each of these three classes of equations is dealt with in one of the remaining three chapters of the book in a manner that is at once rigorous, transparent, and highly readable.Petrovsky was a leading figure in Russian mathematics responsible for many advances in the field of partial differential equations. In these masterly lectures, his commentary and discussion of various aspects of the problems under consideration will prove valuable in deepening students’ understanding and appreciation of these problems.

Lectures on Profinite Topics in Group Theory

by Benjamin Klopsch Nikolay Nikolov Christopher Voll

In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.

Lectures on Profinite Topics in Group Theory

by Benjamin Klopsch Nikolay Nikolov Christopher Voll

In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.

Lectures on Quantum Field Theory and Functional Integration

by Zbigniew Haba

This book offers a concise introduction to quantum field theory and functional integration for students of physics and mathematics. Its aim is to explain mathematical methods developed in the 1970s and 1980s and apply these methods to standard models of quantum field theory. In contrast to other textbooks on quantum field theory, this book treats functional integration as a rigorous mathematical tool. More emphasis is placed on the mathematical framework as opposed to applications to particle physics. It is stressed that the functional integral approach, unlike the operator framework, is suitable for numerical simulations. The book arose from the author's teaching in Wroclaw and preserves the form of his lectures. So some topics are treated as an introduction to the problem rather than a complete solution with all details. Some of the mathematical methods described in the book resulted from the author's own research.

Lectures on Quantum Statistics: With Applications to Dilute Gases and Plasmas (Lecture Notes in Physics #953)

by Werner Ebeling Thorsten Pöschel

Most of the matter in our universe is in a gaseous or plasma state. Yet, most textbooks on quantum statistics focus on examples from and applications in condensed matter systems, due to the prevalence of solids and liquids in our day-to-day lives. In an attempt to remedy that oversight, this book consciously focuses on teaching the subject matter in the context of (dilute) gases and plasmas, while aiming primarily at graduate students and young researchers in the field of quantum gases and plasmas for some of the more advanced topics. The majority of the material is based on a two-semester course held jointly by the authors over many years, and has benefited from extensive feedback provided by countless students and co-workers. The book also includes many historical remarks on the roots of quantum statistics: firstly because students appreciate and are strongly motivated by looking back at the history of a given field of research, and secondly because the spirit permeating this book has been deeply influenced by meetings and discussions with several pioneers of quantum statistics over the past few decades.

Lectures on Random Interfaces

by Tadahisa Funaki

Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hydrodynamic limit and non-equilibrium fluctuation theory. Vershik curves are derived in that limit. A sharp interface limit for the Allen-Cahn equation, that is, a reaction-diffusion equation with bistable reaction term, leads to a mean curvature flow for the interfaces. Its stochastic perturbation, sometimes called a time-dependent Ginzburg-Landau model, stochastic quantization, or dynamic P(φ)-model, is considered. Brief introductions to Brownian motions, martingales, and stochastic integrals are given in an infinite dimensional setting. The regularity property of solutions of stochastic PDEs (SPDEs) of a parabolic type with additive noises is also discussed. The Kardar-Parisi-Zhang (KPZ) equation , which describes a growing interface with fluctuation, recently has attracted much attention. This is an ill-posed SPDE and requires a renormalization. Especially its invariant measures are studied.

Lectures on Real-valued Functions

by Alexander Kharazishvili

This book offers several topics of mathematical analysis which are closely connected with significant properties of real-valued functions of various types (such as semi-continuous functions, monotone functions, convex functions, measurable functions, additive and linear functionals, etc.). Alongside with fairly traditional themes of real analysis and classical measure theory, more profound questions are thoroughly discussed in the book – appropriate extensions and restrictions of functions, oscillation functions and their characterization, discontinuous functions on resolvable topological spaces, pointwise limits of finite sums of periodic functions, some general results on invariant and quasi-invariant measures, the structure of non-measurable sets and functions, the Baire property of functions on topological spaces and its connections with measurability properties of functions, logical and set-theoretical aspects of the behavior of real-valued functions.

Lectures on Several Complex Variables

by Paul M. Gauthier

This monograph provides a concise, accessible snapshot of key topics in several complex variables, including the Cauchy Integral Formula, sequences of holomorphic functions, plurisubharmonic functions, the Dirichlet problem, and meromorphic functions. Based on a course given at Université de Montréal, this brief introduction covers areas of contemporary importance that are not mentioned in most treatments of the subject, such as modular forms, which are essential for Wiles' theorem and the unification of quantum theory and general relativity. Also covered is the Riemann manifold of a function, which generalizes the Riemann surface of a function of a single complex variable and is a topic that is well-known in one complex variable, but rarely treated in several variables. Many details, which are intentionally left out, as well as many theorems are stated as problems, providing students with carefully structured instructive exercises. Prerequisites for use of this book are functions of one complex variable, functions of several real variables, and topology, all at the undergraduate level. Lectures on Several Complex Variables will be of interest to advanced undergraduate and beginning undergraduate students, as well as mathematical researchers and professors.

Lectures on Sphere Arrangements – the Discrete Geometric Side

by Károly Bezdek

This monograph gives a short introduction to the relevant modern parts of discrete geometry, in addition to leading the reader to the frontiers of geometric research on sphere arrangements. The readership is aimed at advanced undergraduate and early graduate students, as well as interested researchers. It contains more than 40 open research problems ideal for graduate students and researchers in mathematics and computer science. Additionally, this book may be considered ideal for a one-semester advanced undergraduate or graduate level course. The core part of this book is based on three lectures given by the author at the Fields Institute during the thematic program on "Discrete Geometry and Applications" and contains four core topics. The first two topics surround active areas that have been outstanding from the birth of discrete geometry, namely dense sphere packings and tilings. Sphere packings and tilings have a very strong connection to number theory, coding, groups, and mathematical programming. Extending the tradition of studying packings of spheres, is the investigation of the monotonicity of volume under contractions of arbitrary arrangements of spheres. The third major topic of this book can be found under the sections on ball-polyhedra that study the possibility of extending the theory of convex polytopes to the family of intersections of congruent balls. This section of the text is connected in many ways to the above-mentioned major topics and it is also connected to some other important research areas as the one on coverings by planks (with close ties to geometric analysis). This fourth core topic is discussed under covering balls by cylinders.

Lectures on Urban Economics

by Brueckner Jan K.

Lectures on Urban Economics offers a rigorous but nontechnical treatment of major topics in urban economics. To make the book accessible to a broad range of readers, the analysis is diagrammatic rather than mathematical. Although nontechnical, the book relies on rigorous economic reasoning. In contrast to the cursory theoretical development often found in other textbooks, Lectures on Urban Economics offers thorough and exhaustive treatments of models relevant to each topic, with the goal of revealing the logic of economic reasoning while also teaching urban economics. Topics covered include reasons for the existence of cities, urban spatial structure, urban sprawl and land-use controls, freeway congestion, housing demand and tenure choice, housing policies, local public goods and services, pollution, crime, and quality of life. Footnotes throughout the book point to relevant exercises, which appear at the back of the book. These 22 extended exercises (containing 125 individual parts) develop numerical examples based on the models analyzed in the chapters. Lectures on Urban Economics is suitable for undergraduate use, as background reading for graduate students, or as a professional reference for economists and scholars interested in the urban economics perspective.

Lectures on Urban Economics

by Jan K. Brueckner

A rigorous but nontechnical treatment of major topics in urban economics. Lectures on Urban Economics offers a rigorous but nontechnical treatment of major topics in urban economics. To make the book accessible to a broad range of readers, the analysis is diagrammatic rather than mathematical. Although nontechnical, the book relies on rigorous economic reasoning. In contrast to the cursory theoretical development often found in other textbooks, Lectures on Urban Economics offers thorough and exhaustive treatments of models relevant to each topic, with the goal of revealing the logic of economic reasoning while also teaching urban economics. Topics covered include reasons for the existence of cities, urban spatial structure, urban sprawl and land-use controls, freeway congestion, housing demand and tenure choice, housing policies, local public goods and services, pollution, crime, and quality of life. Footnotes throughout the book point to relevant exercises, which appear at the back of the book. These 22 extended exercises (containing 125 individual parts) develop numerical examples based on the models analyzed in the chapters. Lectures on Urban Economics is suitable for undergraduate use, as background reading for graduate students, or as a professional reference for economists and scholars interested in the urban economics perspective.

Refine Search

Showing 14,601 through 14,625 of 28,722 results