Browse Results

Showing 17,201 through 17,225 of 28,183 results

Modern Mathematics: An International Movement? (History of Mathematics Education)

by Dirk De Bock

The international New Math developments between about 1950 through 1980, are regarded by many mathematics educators and education historians as the most historically important development in curricula of the twentieth century. It attracted the attention of local and international politicians, of teachers, and of parents, and influenced the teaching and learning of mathematics at all levels—kindergarten to college graduate—in many nations. After garnering much initial support it began to attract criticism. But, as Bill Jacob and the late Jerry Becker show in Chapter 17, some of the effects became entrenched.This volume, edited by Professor Dirk De Bock, of Belgium, provides an outstanding overview of the New Math/modern mathematics movement. Chapter authors provide exceptionally high-quality analyses of the rise of the movement, and of subsequent developments, within a range of nations. The first few chapters show how the initial leadership came from mathematicians in European nations and in the United States of America. The background leaders in Europe were Caleb Gattegno and members of a mysterious group of mainly French pure mathematicians, who since the 1930s had published under the name of (a fictitious) “Nicolas Bourbaki.” In the United States, there emerged, during the 1950s various attempts to improve U.S. mathematics curricula and teaching, especially in secondary schools and colleges. This side of the story climaxed in 1957 when the Soviet Union succeeded in launching “Sputnik,” the first satellite. Undoubtedly, this is a landmark publication in education. The foreword was written by Professor Bob Moon, one of a few other scholars to have written on the New Math from an international perspective. The final “epilogue” chapter, by Professor Geert Vanpaemel, a historian, draws together the overall thrust of the volume, and makes links with the general history of curriculum development, especially in science education, including recent globalization trends.

Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems (Green Energy and Technology)

by Ali M. Eltamaly Almoataz Y. Abdelaziz

This book introduces and analyses the latest maximum power point tracking (MPPT) techniques, which can effectively reduce the cost of power generated from photovoltaic energy systems. It also presents a detailed description, analysis, and comparison of various MPPT techniques applied to stand-alone systems and those interfaced with electric utilities, examining their performance under normal and abnormal operating conditions. These techniques, which and can be conventional or smart, are a current hot topic, and this book is a valuable reference resource for academic researchers and industry professionals who are interested in exploring and implementing advanced MPPT for photovoltaic systems. It is also useful for graduate students who are looking to expand their knowledge of MPPT techniques.

Modern Metaheuristics in Image Processing

by Diego Oliva Marco Pérez-Cisneros Salvador Hinojosa Noe Ortega-Sánchez

The use of metaheuristic algorithms (MA) has been increasing in recent years, and the image processing field is not the exempted of their application. In the last two years a big amount of MA has been introduced as alternatives for solving complex optimization problems. This book collects the most prominent MA of the 2019 and 2020 and verifies its use in image processing tasks. In addition, literature review of both MA and digital image processing is presented as part of the introductory information. Each algorithm is detailed explained with special focus in the tuning parameters and the proper implementation for the image processing tasks. Besides several examples permits to the reader explore and confirm the use of this kind of intelligent methods. Since image processing is widely used in different domains, this book considers different kinds of datasets that includes, magnetic resonance images, thermal images, agriculture images, among others. The reader then can have some ideas of implementation that complement the theory exposed of each optimization mechanism. Regarding the image processing problems this book consider the segmentation by using different metrics based on entropies or variances. In the same way, the identification of different shapes and the detection of objects are also covered in the corresponding chapters. Each chapter is complemented with a wide range of experiments and statistical analysis that permits the reader to judge about the performance of the MA. Finally, there is included a section that includes some discussion and conclusions. This section also provides some open questions and research opportunities for the audience.

Modern Methodology and Applications in Spatial-Temporal Modeling

by Gareth William Peters Tomoko Matsui

​This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet processes which recently have been developed in non-parametric Bayesian literature. The final chapter discusses aspects of dependence modeling, primarily focusing on the role of extreme tail-dependence modeling, copulas, and their role in wireless communications system models.

Modern Methods in Operator Theory and Harmonic Analysis: OTHA 2018, Rostov-on-Don, Russia, April 22-27, Selected, Revised and Extended Contributions (Springer Proceedings in Mathematics & Statistics #291)

by Elijah Liflyand Alexey Karapetyants Vladislav Kravchenko

This proceedings volume gathers selected, peer-reviewed papers from the "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VIII" (OTHA 2018) conference, which was held in Rostov-on-Don, Russia, in April 2018.The book covers a diverse range of topics in advanced mathematics, including harmonic analysis, functional analysis, operator theory, function theory, differential equations and fractional analysis – all fields that have been intensively developed in recent decades. Direct and inverse problems arising in mathematical physics are studied and new methods for solving them are presented. Complex multiparameter objects that require the involvement of operators with variable parameters and functional spaces, with fractional and even variable exponents, make these approaches all the more relevant.Given its scope, the book will especially benefit researchers with an interest in new trends in harmonic analysis and operator theory, though it will also appeal to graduate students seeking new and intriguing topics for further investigation.

Modern Methods in Partial Differential Equations (Dover Books on Mathematics)

by Martin Schechter

Upon its initial 1977 publication, this volume made recent accomplishments in its field available to advanced undergraduates and beginning graduate students of mathematics. Requiring only some familiarity with advanced calculus and rudimentary complex function theory, it covered discoveries of the previous three decades, a particularly fruitful era. Now it remains a permanent, much-cited contribution to the ever-expanding literature on partial differential equations. Author Martin Schechter chose subjects that will motivate students and introduce them to techniques with wide applicability to problems in partial differential equations as well as other branches of analysis. Uniform in theme and outlook, the text features problems that consider existence, uniqueness, estimates, and regularity of solutions. Topics include existence of solutions, regularity of constant and variable coefficients, the Cauchy problem, properties of solutions, boundary value problems in a half-space, the Dirichlet problem, general domains, and general boundary value problems.

Modern Methods in Topological Vector Spaces (Dover Books on Mathematics)

by Albert Wilansky

Designed for a one-year course in topological vector spaces, this text is geared toward advanced undergraduates and beginning graduate students of mathematics. The subjects involve properties employed by researchers in classical analysis, differential and integral equations, distributions, summability, and classical Banach and Frechét spaces. Optional problems with hints and references introduce non-locally convex spaces, Köthe-Toeplitz spaces, Banach algebra, sequentially barrelled spaces, and norming subspaces.Extensive introductory chapters cover metric ideas, Banach space, topological vector spaces, open mapping and closed graph theorems, and local convexity. Duality is the treatment's central theme, highlighted by a presentation of completeness theorems and special topics such as inductive limits, distributions, and weak compactness. More than 30 tables at the end of the book allow quick reference to theorems and counterexamples, and a rich selection of problems concludes each section.

Modern Money Theory: A Primer on Macroeconomics for Sovereign Monetary Systems

by L. Randall Wray

This book, a revised new edition, examines how money is created and how it functions within global exchange rate regimes to highlight how monetary policy can promote economic growth, full employment, and price stability. It provides an introduction to the basics of macroeconomic accounting and the domestic monetary system, as well as fiscal operations, tax policy for sovereign nations, alternative exchange rate regimes. New topics, including central bank clearing, responses to the COVID-19 pandemic, the rise of inflation, and how to finance a Green New Deal, are also discussed. Modern Money Theory provides the reader with a framework for understanding real world economies. It will be relevant to students, researchers, and policymakers interested in monetary policy.

Modern Multidimensional Calculus (Dover Books on Mathematics)

by Marshall Evans Munroe

A second-year calculus text, this volume is devoted primarily to topics in multidimensional analysis. Concepts and methods are emphasized, and rigorous proofs are sometimes replaced by relevant discussion and explanation. Because of the author's conviction that the differential provides a most elegant and useful tool, especially in a multidimensional setting, the notion of the differential is used extensively and matrix methods are stressed in the study of linear transformations.The first three chapters offer introductory material on functions and variables, differentials, and vectors in the plane. Succeeding chapters examine topics in linear algebra, partial derivatives, and applications as well as topics in vector differential calculus. The final chapters explore multiple integrals in addition to line and surface integrals. Exercises appear throughout the text, and answers are provided, making the book ideal for self-study.

Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice (Power Systems)

by Mohammad Kiani-Moghaddam Mojtaba Shivaie Philip D. Weinsier

In today’s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.

Modern Nonlinear Equations

by Thomas L. Saaty

This volume covers many major types of classical equations, including operator equations, functional equations, difference equations, delay-differential equations, integral equations, integro-differential equations, and stochastical differential equations. Its clear organization and copious references make it suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." -- Math Reviews. 1964 edition.

Modern Nonparametric, Robust and Multivariate Methods

by Klaus Nordhausen Sara Taskinen

Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

Modern Optimization Methods for Decision Making Under Risk and Uncertainty

by Pavel S. Knopov Alexei A. Gaivoronski Volodymyr A. Zaslavskyi

The book comprises original articles on topical issues of risk theory, rational decision making, statistical decisions, and control of stochastic systems. The articles are the outcome of a series international projects involving the leading scholars in the field of modern stochastic optimization and decision making. The structure of stochastic optimization solvers is described. The solvers in general implement stochastic quasi-gradient methods for optimization and identification of complex nonlinear models. These models constitute an important methodology for finding optimal decisions under risk and uncertainty. While a large part of current approaches towards optimization under uncertainty stems from linear programming (LP) and often results in large LPs of special structure, stochastic quasi-gradient methods confront nonlinearities directly without need of linearization. This makes them an appropriate tool for solving complex nonlinear problems, concurrent optimization and simulation models, and equilibrium situations of different types, for instance, Nash or Stackelberg equilibrium situations. The solver finds the equilibrium solution when the optimization model describes the system with several actors. The solver is parallelizable, performing several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, and of composite stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. Several complex examples with applications to water resources management, energy markets, pricing of services on social networks are provided. In the case of power system, regulator makes decision on the final expansion plan, considering the strategic behavior of regulated companies and coordinating the interests of different economic entities. Such a plan can be an equilibrium − a planned decision where a company cannot increase its expected gain unilaterally.

Modern Optimization Techniques with Applications in Electric Power Systems

by Abdel-Aal Hassan Mantawy Soliman Abdel-Hady Soliman

This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful.

Modern Optimization with R

by Paulo Cortez

The goal of this book is to gather in a single document the most relevant concepts related to modern optimization methods, showing how such concepts and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e. g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in Computer Science, Information Technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R.

Modern Optimization with R (Use R!)

by Paulo Cortez

The goal of this book is to gather in a single work the most relevant concepts related in optimization methods, showing how such theories and methods can be addressed using the open source, multi-platform R tool. Modern optimization methods, also known as metaheuristics, are particularly useful for solving complex problems for which no specialized optimization algorithm has been developed. These methods often yield high quality solutions with a more reasonable use of computational resources (e.g. memory and processing effort). Examples of popular modern methods discussed in this book are: simulated annealing; tabu search; genetic algorithms; differential evolution; and particle swarm optimization. This book is suitable for undergraduate and graduate students in computer science, information technology, and related areas, as well as data analysts interested in exploring modern optimization methods using R.This new edition integrates the latest R packages through text and code examples. It also discusses new topics, such as: the impact of artificial intelligence and business analytics in modern optimization tasks; the creation of interactive Web applications; usage of parallel computing; and more modern optimization algorithms (e.g., iterated racing, ant colony optimization, grammatical evolution).

Modern Perspectives in Theoretical Physics: 80th Birthday Festschrift in Honor of K. Babu Joseph

by K. S. Sreelatha Varghese Jacob

This book highlights the review of articles in theoretical physics by the students of Professor K. Babu Joseph, as a Festschrift for his 80th Birthday. This book is divided into four sections based on the contributions of Babu Joseph and his students. The four sections are Cosmology, High Energy Physics, Mathematical Physics and Non-linear Dynamics and its applications.

Modern Physics

by Kenneth S. Krane

One of the field’s most respected introductory texts, Modern Physics provides a deep exploration of fundamental theory and experimentation. Appropriate for second-year undergraduate science and engineering students, this esteemed text presents a comprehensive introduction to the concepts and methods that form the basis of modern physics, including examinations of relativity, quantum physics, statistical physics, nuclear physics, high energy physics, astrophysics, and cosmology. A balanced pedagogical approach examines major concepts first from a historical perspective, then through a modern lens using relevant experimental evidence and discussion of recent developments in the field. The emphasis on the interrelationship of principles and methods provides continuity, creating an accessible “storyline” for students to follow.

Modern Physics: An Invitation to Statistical and Quantum Mechanics (UNITEXT for Physics)

by Luca Salasnich Francesco Lorenzi

This textbook offers an introduction to statistical mechanics, special relativity, and quantum physics, developed from lecture notes for the "Quantum Physics" course at the University of Padua. Beginning with a brief review of classical statistical mechanics in the first chapter, the book explores special and general relativity in the second chapter. The third chapter delves into the historical analysis of light quantization, while the fourth chapter discusses Niels Bohr's quantization of energy levels and electromagnetic transitions. The Schrödinger equation is investigated in the fifth chapter. Chapter Six covers applications of quantum mechanics, including the quantum particle in a box, quantum particle in harmonic potential, quantum tunneling, stationary perturbation theory, and time-dependent perturbation theory. Chapter Seven outlines the basic axioms of quantum mechanics. Chapter Eight focuses on quantum atomic physics, emphasizing electron spin and utilizing the Dirac equation for theoretical justification. The ninth chapter explains quantum mechanics principles for identical particles at zero temperature, while Chapter Ten extends the discussion to quantum particles at finite temperature. Chapter Eleven provides insights into quantum information and entanglement, and the twelfth chapter explains the path integral approach to quantum mechanics.

Modern Physics: Introduction to Statistical Mechanics, Relativity, and Quantum Physics (UNITEXT for Physics)

by Luca Salasnich

This book offers an introduction to statistical mechanics, special relativity, and quantum physics. It is based on the lecture notes prepared for the one-semester course of "Quantum Physics" belonging to the Bachelor of Science in Material Sciences at the University of Padova.The first chapter briefly reviews the ideas of classical statistical mechanics introduced by James Clerk Maxwell, Ludwig Boltzmann, Willard Gibbs, and others. The second chapter is devoted to the special relativity of Albert Einstein. In the third chapter, it is historically analyzed the quantization of light due to Max Planck and Albert Einstein, while the fourth chapter discusses the Niels Bohr quantization of the energy levels and the electromagnetic transitions. The fifth chapter investigates the Schrodinger equation, which was obtained by Erwin Schrodinger from the idea of Louis De Broglie to associate to each particle a quantum wavelength. Chapter Six describes the basic axioms of quantum mechanics, which were formulated in the seminal books of Paul Dirac and John von Neumann. In chapter seven, there are several important application of quantum mechanics: the quantum particle in a box, the quantum particle in the harmonic potential, the quantum tunneling, the stationary perturbation theory, and the time-dependent perturbation theory. Chapter Eight is devoted to the study of quantum atomic physics with special emphasis on the spin of the electron, which needs the Dirac equation for a rigorous theoretical justification. In the ninth chapter, it is explained the quantum mechanics of many identical particles at zero temperature, while in Chapter Ten the discussion is extended to many quantum particles at finite temperature by introducing and using the quantum statistical mechanics. The four appendices on Dirac delta function, complex numbers, Fourier transform, and differential equations are a useful mathematical aid for the reader.

Modern Problems in Applied Analysis (Trends in Mathematics)

by Piotr Drygaś Sergei Rogosin

This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference “Boundary Value Problems, Functional Equations and Applications” (BAF-3), held in Rzeszow, Poland on 20-23 April 2016. The contributions presented here develop a technique related to the scope of the workshop and touching on the fields of differential and functional equations, complex and real analysis, with a special emphasis on topics related to boundary value problems. Further, the papers discuss various applications of the technique, mainly in solid mechanics (crack propagation, conductivity of composite materials), biomechanics (viscoelastic behavior of the periodontal ligament, modeling of swarms) and fluid dynamics (Stokes and Brinkman type flows, Hele-Shaw type flows). The book is addressed to all readers who are interested in the development and application of innovative research results that can help solve theoretical and real-world problems.

Modern Problems in PDEs and Applications: Extended Abstracts of the 2023 GAP Center Summer School (Trends in Mathematics #4)

by Michael Ruzhansky Joel Restrepo Karel Van Bockstal Berikbol Torebek Marianna Chatzakou

The principal aim of the volume is gathering all the contributions given by the speakers (mini courses) and some of the participants (short talks) of the summer school "Modern Problems in PDEs and Applications" held at the Ghent Analysis and PDE Center from 23 August to 2 September 2023. The school was devoted to the study of new techniques and approaches for solving partial differential equations, which can either be considered or arise from the physical point of view or the mathematical perspective. Both sides are extremely important since theories and methods can be developed independently, aiming to gather each other in a common objective. The aim of the summer school was to progress and advance in the problems considered. Note that real-world problems and their applications are classical study trends in physical or mathematical modelling. The summer school was organised in a friendly atmosphere and synergy, and it was an excellent opportunity to promote and encourage the development of the subject in the community.

Modern Psychometrics: The Science of Psychological Assessment (International Library Of Psychology Ser.)

by John Rust Michal Kosinski David Stillwell

This popular text introduces the reader to all aspects of psychometric assessment, including its history, the construction and administration of traditional tests, and the latest techniques for psychometric assessment online. Rust, Kosinski, and Stillwell begin with a comprehensive introduction to the increased sophistication in psychometric methods and regulation that took place during the 20th century, including the many benefits to governments, businesses, and customers. In this new edition, the authors explore the increasing influence of the internet, wherein everything we do on the internet is available for psychometric analysis, often by AI systems operating at scale and in real time. The intended and unintended consequences of this paradigm shift are examined in detail, and key controversies, such as privacy and the psychographic microtargeting of online messages, are addressed. Furthermore, this new edition includes brand-new chapters on item response theory, computer adaptive testing, and the psychometric analysis of the digital traces we all leave online. Modern Psychometrics combines an up-to-date scientific approach with full consideration of the political and ethical issues involved in the implementation of psychometric testing in today’s society. It will be invaluable to both undergraduate and postgraduate students, as well as practitioners who are seeking an introduction to modern psychometric methods.

Modern Quantification Theory: Joint Graphical Display, Biplots, and Alternatives (Behaviormetrics: Quantitative Approaches to Human Behavior #8)

by Eric J. Beh Rosaria Lombardo Shizuhiko Nishisato Jose G. Clavel

This book offers a new look at well-established quantification theory for categorical data, referred to by such names as correspondence analysis, dual scaling, optimal scaling, and homogeneity analysis. These multiple identities are a consequence of its large number of properties that allow one to analyze and visualize the strength of variable association in an optimal solution. The book contains modern quantification theory for analyzing the association between two and more categorical variables in a variety of applicative frameworks. Visualization has attracted much attention over the past decades and given rise to controversial opinions. One may consider variations of plotting systems used in the construction of the classic correspondence plot, the biplot, the Carroll-Green-Schaffer scaling, or a new approach in doubled multidimensional space as presented in the book. There are even arguments for no visualization at all. The purpose of this book therefore is to shed new light on time-honored graphical procedures with critical reviews, new ideas, and future directions as alternatives. This stimulating volume is written with fresh new ideas from the traditional framework and the contemporary points of view. It thus offers readers a deep understanding of the ever-evolving nature of quantification theory and its practice. Part I starts with illustrating contingency table analysis with traditional joint graphical displays (symmetric, non-symmetric) and the CGS scaling and then explores logically correct graphs in doubled Euclidean space for both row and column variables. Part II covers a variety of mathematical approaches to the biplot strategy in graphing a data structure, providing a useful source for this modern approach to graphical display. Part II is also concerned with a number of alternative approaches to the joint graphical display such as bimodal cluster analysis and other statistical problems relevant to quantification theory.

Modern Real Analysis

by William P. Ziemer

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.

Refine Search

Showing 17,201 through 17,225 of 28,183 results