Browse Results

Showing 18,051 through 18,075 of 28,086 results

Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data

by Stephen J Guastello Robert A.M. Gregson

Although its roots can be traced to the 19th century, progress in the study of nonlinear dynamical systems has taken off in the last 30 years. While pertinent source material exists, it is strewn about the literature in mathematics, physics, biology, economics, and psychology at varying levels of accessibility. A compendium research methods reflect

Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach

by Wassim M. Haddad VijaySekhar Chellaboina

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Nonlinear Dynamical Systems in Engineering

by Nicolae Herisanu Vasile Marinca

This book presents and extend different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called "base functions". These are absolutely necessary to obtain the auxiliary functions involved in the optimal approaches which are presented in the second part. Every chapter introduces a distinct approximate method applicable to nonlinear dynamical systems. Each approximate analytical approach is accompanied by representative examples related to nonlinear dynamical systems from to various fields of engineering.

Nonlinear Dynamics and Chaos

by Steven H. Strogatz

An accessible and clearly-written introduction for first-time students of chaos and nonlinear systems, with plenty of examples, illustrations, and applications to science and engineering. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition (Studies In Nonlinearity Ser.)

by Steven H. Strogatz

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Nonlinear Dynamics and Chaos: Where do we go from here?

by Mario Di Bernardo John Hogan Bernd Krauskopf Eddie Wilson Alan Champneys Hinke Osinga Martin Homer

Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering

by Steven H Strogatz

The goal of this third edition of Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering is the same as previous editions: to provide a good foundation - and a joyful experience - for anyone who’d like to learn about nonlinear dynamics and chaos from an applied perspective.The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.The prerequisites are comfort with multivariable calculus and linear algebra, as well as a first course in physics. Ideas from probability, complex analysis, and Fourier analysis are invoked, but they're either worked out from scratch or can be safely skipped (or accepted on faith).Changes to this edition include substantial exercises about conceptual models of climate change, an updated treatment of the SIR model of epidemics, and amendments (based on recent research) about the Selkov model of oscillatory glycolysis. Equations, diagrams, and every word has been reconsidered and often revised. There are also about 50 new references, many of them from the recent literature.The most notable change is a new chapter. Chapter 13 is about the Kuramoto model.The Kuramoto model is an icon of nonlinear dynamics. Introduced in 1975 by the Japanese physicist Yoshiki Kuramoto, his elegant model is one of the rare examples of a high-dimensional nonlinear system that can be solved by elementary means.Students and teachers have embraced the book in the past, its general approach and framework continue to be sound.

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition

by Steven H. Strogatz

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples and geome

Nonlinear Dynamics and Chaotic Phenomena: An Introduction

by Bhimsen K. Shivamoggi

This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker's transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special emphasis on some aspects of fluid dynamics and plasma physics reflecting the author's involvement in these areas of physics. A few exercises have been provided that range from simple applications to occasional considerable extension of the theory. Finally, the list of references given at the end of the book contains primarily books and papers used in developing the lecture material this volume is based on. This book has grown out of the author's lecture notes for an interdisciplinary graduate-level course on nonlinear dynamics. The basic concepts, language and results of nonlinear dynamical systems are described in a clear and coherent way. In order to allow for an interdisciplinary readership, an informal style has been adopted and the mathematical formalism has been kept to a minimum. This book is addressed to first-year graduate students in applied mathematics, physics, and engineering, and is useful also to any theoretically inclined researcher in the physical sciences and engineering. This second edition constitutes an extensive rewrite of the text involving refinement and enhancement of the clarity and precision, updating and amplification of several sections, addition of new material like theory of nonlinear differential equations, solitons, Lagrangian chaos in fluids, and critical phenomena perspectives on the fluid turbulence problem and many new exercises.

Nonlinear Dynamics and Complexity

by Valentin Afraimovich Albert C. J. Luo Xilin Fu

This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

Nonlinear Dynamics and Pattern Formation in the Natural Environment (Chapman And Hall/crc Research Notes In Mathematics Ser. #335)

by A. Van Harten A. Doelman

This Research Note aims to provide an insight into recent developments in the theory of pattern formation. In the last decade there has been considerable progress in this field, both from a theoretical and a practical point of view. Recent mathematical developments concern the study of the nonlinear stability of systems at near-critical conditions by an appropriate system of modulation equations. The complexity of the original problem can be reduced drastically by this approximation. Moreover, it provides unifying point of view for a wide range of problems. New applications of the theory arise in a multitude of scientific areas such as hydrodynamics, reaction-diffusion problems, oceanography, meteorology, combustion, geophysical and biological morphodynamics and semi-conductors.This book is intended to show the interactions between the mathematical theory of nonlinear dynamics and the study of pattern generating phenomena in the natural environment. There is an intimate relationship between new insights in the mathematical aspects of nonlinear pattern formation and the comprehension of such phenomena. Therefore there are two partly overlapping main themes: one in which the emphasis is on generally applicable mathematical theories and techniques and one in which the phenomenology of pattern evolution in various areas is discussed.The book comprises 19 contributions by experts in the field. Although the emphasis changes considerably from paper to paper, in each contribution the same two themes are present; all the authors have aimed to achieve a suitable balance between the mathematical theory and the physical phenomena.

Nonlinear Dynamics and Stochastic Mechanics: Proceedings Of The Iutam Symposium Held In Monticello, Illinois, U. S. A. , 26-30 August 2002 (Fields Institute Communications Ser. #Vol. 9)

by Wolfgang Kliemann

Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.

Nonlinear Dynamics in Computational Neuroscience (PoliTO Springer Series)

by Fernando Corinto Alessandro Torcini

This book provides an essential overview of computational neuroscience. It addresses a broad range of aspects, from physiology to nonlinear dynamical approaches to understanding neural computation, and from the simulation of brain circuits to the development of engineering devices and platforms for neuromorphic computation. Written by leading experts in such diverse fields as neuroscience, physics, psychology, neural engineering, cognitive science and applied mathematics, the book reflects the remarkable advances that have been made in the field of computational neuroscience, an emerging discipline devoted to the study of brain functions in terms of the information-processing properties of the structures forming the nervous system. The contents build on the workshop “Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT,” which was held in Torino, Italy in September 2015.

Nonlinear Dynamics of Reservoir Mixtures

by Vladimir Mitlin

Nonlinear Dynamics of Reservoir Mixtures provides an overview of modeling techniques for solving nonlinear problems in hydrodynamics, with an emphasis on compositional flows in porous reservoirs. The volume focuses on nonlinear wave techniques for simulating and predicting fluid dynamic processes in petroleum reservoirs and discusses general applications of these models for other fluids.Topics covered include inhomogeneous space structures in reservoir processes, gradient models for analyzing changes in thermodynamic and hydrodynamic fluid properties, phase transition dynamics in fluids and rock minerals, and wetting phenomena. The book also discusses the stages involved in developing compositional simulators for enhanced oil recovery and describes applications used in hydrocarbon fields in the former USSR.Nonlinear Dynamics of Reservoir Mixtures provides excellent reference material for mathematicians, petroleum engineers, exploration geophysicists, and mechanical engineers. It is also a useful compositional modeling text for graduate students in the earth sciences and in petroleum and chemical engineering.

Nonlinear Dynamics of Structures

by Sergio Oller

This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in nonlinear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear timeindependent materials (plasticity, damage and frequencies evolution), as well as those time dependent nonlinear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the nonlinear dynamic structure solution are studied and the theoretical concepts and its programming algorithms are presented.

Nonlinear Dynamics of Time Delay Systems: Methods and Applications

by Jian Xu

This book presents research advancements in the dynamics of systems with time delay conducted by the group led by Professor Jian Xu. Addressing the challenges arising from the joint impact of time delay and nonlinearity, novel theoretical approaches are developed to formulate the nonlinear response of the system. This facilitates the classification of complex nonlinear dynamics, especially the non-resonant and resonant double Hopf bifurcation. In contrast to systems without time delay, time delay systems require specific considerations when identifying system parameters, particularly the time delay. Consequently, inverse problems of systems with time delay are also explored in this book. Moreover, detailed investigations on vibration suppression methods and experimental prototypes based on time delay, such as time delay isolators with quasi-zero stiffness, are conducted. Simultaneously, this book is enriched with a large number of case studies ranging from manufacturing, network science, biology, and public transportation, illuminating the mechanisms of delay-induced nonlinear dynamics in practical applications. This book is suitable for graduate students and researchers who are eager to understand the delay-induced nonlinear dynamics, or technical personnel in whose projects small variations of time delay may cause significant changes in system responses.

Nonlinear Dynamics, Chaos, and Complexity: In Memory of Professor Valentin Afraimovich (Nonlinear Physical Science)

by Dimitri Volchenkov

This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).

Nonlinear Dynamics, Mathematical Biology, And Social Science: Wise Use Of Alternative Therapies (Santa Fe Institute Studies In The Sciences Of C... Ser.)

by Joshua M. Epstein

These lectures develop simple models of complex social processes using nonlinear dynamics and mathematical biology. Dynamical analogies between seemingly disparate social and biological phenomena,revolutions and epidemics, arms races, and ecosystem dynamics,are revealed and exploited. Nonlinear Dynamics, Mathematical Biology, and Social Science invites social scientists to relax,in some cases abandon,the predominant assumption of perfectly informed utility maximization and explore social dynamics from such perspectives as epidemiology and predator-prey theory. The volume includes a concentrated course on nonlinear dynamical systems.

Nonlinear Dynamics, Volume 1

by Gaetan Kerschen

Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities . . . In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity

Nonlinear Dynamics: Exploration Through Normal Forms (Dover Books On Physics Series #Vol. 5)

by Prof. Yair Zarmi Peter B. Kahn

Geared toward advanced undergraduates and graduate students, this exposition covers the method of normal forms and its application to ordinary differential equations through perturbation analysis. In addition to its emphasis on the freedom inherent in the normal form expansion, the text features numerous examples of equations, the kind of which are encountered in many areas of science and engineering. The treatment begins with an introduction to the basic concepts underlying the normal forms. Coverage then shifts to an investigation of systems with one degree of freedom that model oscillations, in which the force has a dominant linear term and a small nonlinear one. The text considers a variety of nonautonomous systems that arise during the study of forced oscillatory motion. Topics include boundary value problems, connections to the method of the center manifold, linear and nonlinear Mathieu equations, pendula, Nuclear Magnetic Resonance, coupled oscillator systems, and other subjects. 1998 edition.

Nonlinear Dynamics: Materials, Theory and Experiments

by Mustapha Tlidi Marcel G. Clerc

This book presents recent advances, new ideas and novel techniques related to the field of nonlinear dynamics, including localized pattern formation, self-organization and chaos. Various natural systems ranging from nonlinear optics to mechanics, fluids and magnetic are considered. The aim of this book is to gather specialists from these various fields of research to promote cross-fertilization and transfer of knowledge between these active research areas. In particular, nonlinear optics and laser physics constitute an important part in this issue due to the potential applications for all-optical control of light, optical storage, and information processing. Other possible applications include the generation of ultra-short pulses using all-fiber cavities.

Nonlinear Eigenproblems in Image Processing and Computer Vision (Advances in Computer Vision and Pattern Recognition)

by Guy Gilboa

This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case.Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processing and computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods.This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.

Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids (Shock Wave and High Pressure Phenomena)

by John D. Clayton

This book describes thermoelastic and inelastic deformation processes in crystalline solids undergoing loading by shock compression. Constitutive models with a basis in geometrically nonlinear continuum mechanics supply these descriptions. Large deformations such as finite strains and rotations, are addressed. The book covers dominant mechanisms of nonlinear thermoelasticity, dislocation plasticity, deformation twinning, fracture, flow, and other structure changes. Rigorous derivations of theoretical results are provided, with approximately 1300 numbered equations and an extensive bibliography of over 500 historical and modern references spanning from the 1920s to the present day. Case studies contain property data, as well as analytical, and numerical solutions to shock compression problems for different materials. Such materials are metals, ceramics, and minerals, single crystalline and polycrystalline.The intended audience of this book is practicing scientists (physicists, engineers, materials scientists, and applied mathematicians) involved in advanced research on shock compression of solid materials.

Nonlinear Elliptic Partial Differential Equations: An Introduction (Universitext)

by Hervé Le Dret

This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations.After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

Nonlinear Equations for Beams and Degenerate Plates with Piers (SpringerBriefs in Applied Sciences and Technology)

by Filippo Gazzola Maurizio Garrione

This book develops a full theory for hinged beams and degenerate plates with multiple intermediate piers with the final purpose of understanding the stability of suspension bridges. New models are proposed and new tools are provided for the stability analysis. The book opens by deriving the PDE’s based on the physical models and by introducing the basic framework for the linear stationary problem. The linear analysis, in particular the behavior of the eigenvalues as the position of the piers varies, enables the authors to tackle the stability issue for some nonlinear evolution beam equations, with the aim of determining the “best position” of the piers within the beam in order to maximize its stability. The study continues with the analysis of a class of degenerate plate models. The torsional instability of the structure is investigated, and again, the optimal position of the piers in terms of stability is discussed. The stability analysis is carried out by means of both analytical tools and numerical experiments. Several open problems and possible future developments are presented. The qualitative analysis provided in the book should be seen as the starting point for a precise quantitative study of more complete models, taking into account the action of aerodynamic forces. This book is intended for a two-fold audience. It is addressed both to mathematicians working in the field of Differential Equations, Nonlinear Analysis and Mathematical Physics, due to the rich number of challenging mathematical questions which are discussed and left as open problems, and to Engineers interested in mechanical structures, since it provides the theoretical basis to deal with models for the dynamics of suspension bridges with intermediate piers. More generally, it may be enjoyable for readers who are interested in the application of Mathematics to real life problems.

Refine Search

Showing 18,051 through 18,075 of 28,086 results