- Table View
- List View
Nonlinear Time Series: Theory, Methods and Applications with R Examples (Chapman & Hall/CRC Texts in Statistical Science)
by Randal Douc Eric Moulines David StofferThis text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.
Nonlinear Time-Delay Systems: A Geometric Approach (SpringerBriefs in Electrical and Computer Engineering)
by Claudia Califano Claude H. MoogThis brief focuses on the structural properties of nonlinear time-delay systems. It provides a link between coverage of fundamental theoretical properties and advanced control algorithms, as well as suggesting a path for the generalization of the differential geometric approach to time-delay systems . The brief begins with an introduction to a class of single-input nonlinear time-delay systems. It then focuses on geometric methods treating them and offers a geometric framework for integrability. The book has chapters dedicated to the accessibility and observability of nonlinear time-delay systems, allowing readers to understand the systems in a well-ordered, structured way. Finally, the brief concludes with applications of integrability and the control of single-input time-delay systems. This brief employs exercises and examples to familiarize readers with the time-delay context. It is of interest to researchers, engineers and postgraduate students who work in the area of nonlinear control systems.
Nonlinear Transformations of Random Processes (Dover Books on Electrical Engineering)
by Ralph DeutschThis concise treatment of nonlinear noise techniques encountered in system applications is suitable for advanced undergraduates and graduate students. The book is also a valuable reference for systems analysts and communication engineers, as it discusses the basic mathematical theories of nonlinear transformations applied to random processes encountered in communications and control systems. Prerequisites include a familiarity with statistics, probability, complex variables, and Fourier and Laplace transforms. The first five chapters present specific classes of nonlinear devices and random processes that in combination lead to closed form solutions for the statistical properties of the transformed process. Subsequent chapters address techniques based on the use of series representations, general systematic approaches to the subject of nonlinear transformations of random processes, and sampling and quantizing a random process. A helpful Appendix features notes on hypergeometric functions.
Nonlinear Vibrations and the Wave Equation (Springerbriefs In Mathematics)
by Alain HarauxThis book gathers the revised lecture notes from a seminar course offered at the Federal University of Rio de Janeiro in 1986, then in Tokyo in 1987. An additional chapter has been added to reflect more recent advances in the field.
Nonlinear Water Waves: An Interdisciplinary Interface (Tutorials, Schools, and Workshops in the Mathematical Sciences)
by David Henry Konstantinos Kalimeris Emilian I. Părău Jean-Marc Vanden-Broeck Erik WahlénThe motion of water is governed by a set of mathematical equations which are extremely complicated and intractable. This is not surprising when one considers the highly diverse and intricate physical phenomena which may be exhibited by a given body of water. Recent mathematical advances have enabled researchers to make major progress in this field, reflected in the topics featured in this volume. Cutting-edge techniques and tools from mathematical analysis have generated strong rigorous results concerning the qualitative and quantitative physical properties of solutions of the governing equations. Furthermore, accurate numerical computations of fully-nonlinear steady and unsteady water waves in two and three dimensions have contributed to the discovery of new types of waves. Model equations have been derived in the long-wave and modulational regime using Hamiltonian formulations and solved numerically. This book brings together interdisciplinary researchers working in the field of nonlinear water waves, whose contributions range from survey articles to new research results which address a variety of aspects in nonlinear water waves. It is motivated by a workshop which was organised at the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna, November 27-December 7, 2017. The key aim of the workshop was to describe, and foster, new approaches to research in this field. This is reflected in the contents of this book, which is aimed to stimulate both experienced researchers and students alike.
Nonlinear Wave Equations
by Tatsien Li Yi ZhouThis book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Nonlinear Wave Equations (Chapman And Hall/crc Pure And Applied Mathematics Ser. #194)
by Satyanad KichenassamyThis work examines the mathematical aspects of nonlinear wave propagation, emphasizing nonlinear hyperbolic problems. It introduces the tools that are most effective for exploring the problems of local and global existence, singularity formation, and large-time behaviour of solutions, and for the study of perturbation methods.
Nonlinear Waves and Pattern Dynamics
by Efim Pelinovsky Nizar Abcha Innocent MutabaziThis book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod (Russia). The chapters have been written by leading scientists in Nonlinear Physics, and the topics chosen so as to cover all the fields to which Prof. Ezersky himself contributed, by means of experimental, theoretical and numerical approaches. The volume will appeal to advanced students and researchers studying nonlinear waves and pattern dynamics, as well as other scientists interested in their applications in various natural media.
Nonlinear Waves and Solitons on Contours and Closed Surfaces
by Andrei LuduThis volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.
Nonlinear Waves in Elastic Media
by A.G. Kulikovskii Elena I. SveshnikovaNonlinear Waves in Elastic Media explores the theoretical results of one-dimensional nonlinear waves, including shock waves, in elastic media. It is the first book to provide an in-depth and comprehensive presentation of the nonlinear wave theory while taking anisotropy effects into account. The theory is completely worked out and draws on 15 years of research by the authors, one of whom also wrote the 1965 classic Magnetohydrodynamics. Nonlinear Waves in Elastic Media emphasizes the behavior of quasitransverse waves and analyzes arbitrary discontinuity disintegration problems, illustrating that the solution can be non-unique - a surprising result. The solution is shown to be especially interesting when anisotropy and nonlinearity effects interact, even in small-amplitude waves. In addition, the text contains an independent mathematical chapter describing general methods to study hyperbolic systems expressing the conservation laws. The theoretical results described in Nonlinear Waves in Elastic Media allow, for the first time, discovery and interpretation of many new peculiarities inherent to the general problem of discontinuous solutions and so provide a valuable resource for advanced students and researchers involved with continuum mechanics and partial differential equations.
Nonlinear Waves: From Dissipative Solitons to Magnetic Solitons
by Emmanuel Kengne WuMing LiuThis book highlights the methods to engineer dissipative and magnetic nonlinear waves propagating in nonlinear systems. In the first part of the book, the authors present methodologically mathematical models of nonlinear waves propagating in one- and two-dimensional nonlinear transmission networks without/with dissipative elements. Based on these models, the authors investigate the generation and the transmission of nonlinear modulated waves, in general, and solitary waves, in particular, in networks under consideration. In the second part of the book, the authors develop basic theoretical results for the dynamics matter-wave and magnetic-wave solitons of nonlinear systems and of Bose–Einstein condensates trapped in external potentials, combined with the time-modulated nonlinearity. The models treated here are based on one-, two-, and three-component non-autonomous Gross–Pitaevskii equations. Based on the Heisenberg model of spin–spin interactions, the authors also investigate the dynamics of magnetization in ferromagnet with or without spin-transfer torque. This research book is suitable for physicists, mathematicians, engineers, and graduate students in physics, mathematics, and network and information engineering.
Nonlinear and Convex Analysis: Proceedings in Honor of Ky Fan
by Stephen Simons Bor-Luh LinThis book contains expanded versions of the talks given at the conference held in honour of professor Ky Fan in California in 1985, as well as papers on nonlinear and convex analysis as contributions to Ky Fan. It also includes a list of publications by Ky Fan.
Nonlinear and Inverse Problems in Electromagnetics: PIERS 2017, St. Petersburg, Russia, May 22-25 (Springer Proceedings in Mathematics & Statistics #243)
by L. Beilina Yu. G. SmirnovThis volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
Nonlinear and Modern Mathematical Physics: NMMP-2022, Tallahassee, Florida, USA (Virtual), June 17–19 (Springer Proceedings in Mathematics & Statistics #459)
by Solomon Manukure Wen-Xiu MaThis book gathers peer-reviewed, selected contributions from participants of the 6th International Workshop on Nonlinear and Modern Mathematical Physics (NMMP-2022), hosted virtually from June 17–19, 2022. Works contained in this volume cover topics like nonlinear differential equations, integrable systems, Hamiltonian systems, inverse scattering transform, Painleve's analysis, nonlinear wave phenomena and applications, numerical methods of nonlinear wave equations, quantum integrable systems, and more. In this book, researchers and graduate students in mathematics and related areas will find new methods and tools that only recently have been developed to solve nonlinear problems. The sixth edition of the NMMP workshop was organized by Florida A&M University in Tallahassee, Florida, USA, with support from the University of South Florida, Florida State University, Embry-Riddle Aeronautical University, Savannah State University, Prairie View A&M University, and Beijing Jiaotong University. The aim was to bring together researchers from around the world to present their findings and foster collaboration for future research.
Nonlinear, Nonlocal and Fractional Turbulence: Alternative Recipes for the Modeling of Turbulence
by Kolumban Hutter Peter William EgolfExperts of fluid dynamics agree that turbulence is nonlinear and nonlocal. Because of a direct correspondence, nonlocality also implies fractionality. Fractional dynamics is the physics related to fractal (geometrical) systems and is described by fractional calculus. Up-to-present, numerous criticisms of linear and local theories of turbulence have been published. Nonlinearity has established itself quite well, but so far only a very small number of general nonlocal concepts and no concrete nonlocal turbulent flow solutions were available. This book presents the first analytical and numerical solutions of elementary turbulent flow problems, mainly based on a nonlocal closure. Considerations involve anomalous diffusion (Lévy flights), fractal geometry (fractal-β, bi-fractal and multi-fractal model) and fractional dynamics. Examples include a new ‘law of the wall’ and a generalization of Kraichnan’s energy-enstrophy spectrum that is in harmony with non-extensive and non-equilibrium thermodynamics (Tsallis thermodynamics) and experiments. Furthermore, the presented theories of turbulence reveal critical and cooperative phenomena in analogy with phase transitions in other physical systems, e.g., binary fluids, para-ferromagnetic materials, etc.; the two phases of turbulence identifying the laminar streaks and coherent vorticity-rich structures. This book is intended, apart from fluids specialists, for researchers in physics, as well as applied and numerical mathematics, who would like to acquire knowledge about alternative approaches involved in the analytical and numerical treatment of turbulence.
Nonlinearities in Economics: An Interdisciplinary Approach to Economic Dynamics, Growth and Cycles (Dynamic Modeling and Econometrics in Economics and Finance #29)
by Ruedi Stoop Alexander N. Pisarchik Giuseppe OrlandoThis interdisciplinary book argues that the economy has an underlying non-linear structure and that business cycles are endogenous, which allows a greater explanatory power with respect to the traditional assumption that dynamics are stochastic and shocks are exogenous. The first part of this work is formal-methodological and provides the mathematical background needed for the remainder, while the second part presents the view that signal processing involves construction and deconstruction of information and that the efficacy of this process can be measured. The third part focuses on economics and provides the related background and literature on economic dynamics and the fourth part is devoted to new perspectives in understanding nonlinearities in economic dynamics: growth and cycles. By pursuing this approach, the book seeks to (1) determine whether, and if so where, common features exist, (2) discover some hidden features of economic dynamics, and (3) highlight specific indicators of structural changes in time series. Accordingly, it is a must read for everyone interested in a better understanding of economic dynamics, business cycles, econometrics and complex systems, as well as non-linear dynamics and chaos theory.
Nonlinearity, Complexity and Randomness in Economics: Towards Algorithmic Foundations for Economics (Surveys of Recent Research in Economics #9)
by Stefano Zambelli Donald A.R. GeorgeNonlinearity, Complexity and Randomness in Economics presents a variety of papers by leading economists, scientists, and philosophers who focus on different aspects of nonlinearity, complexity and randomness, and their implications for economics. A theme of the book is that economics should be based on algorithmic, computable mathematical foundations. Features an interdisciplinary collection of papers by economists, scientists, and philosophers Presents new approaches to macroeconomic modelling, agent-based modelling, financial markets, and emergent complexity Reveals how economics today must be based on algorithmic, computable mathematical foundations
Nonlocal Diffusion and Applications
by Claudia Bucur Enrico ValdinociWorking in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets (Frontiers in Mathematics)
by José M. Mazón Julio Daniel Rossi J. Julián ToledoThis book highlights the latest developments in the geometry of measurable sets, presenting them in simple, straightforward terms. It addresses nonlocal notions of perimeter and curvature and studies in detail the minimal surfaces associated with them. These notions of nonlocal perimeter and curvature are defined on the basis of a non-singular kernel. Further, when the kernel is appropriately rescaled, they converge toward the classical perimeter and curvature as the rescaling parameter tends to zero. In this way, the usual notions can be recovered by using the nonlocal ones. In addition, nonlocal heat content is studied and an asymptotic expansion is obtained. Given its scope, the book is intended for undergraduate and graduate students, as well as senior researchers interested in analysis and/or geometry.
Nonlocal and Fractional Operators (SEMA SIMAI Springer Series #26)
by Francesco Mainardi Luisa Beghin Roberto GarrappaThe purpose of this volume is to explore new bridges between different research areas involved in the theory and applications of the fractional calculus. In particular, it collects scientific and original contributions to the development of the theory of nonlocal and fractional operators. Special attention is given to the applications in mathematical physics, as well as in probability. Numerical methods aimed to the solution of problems with fractional differential equations are also treated in the book. The contributions have been presented during the international workshop "Nonlocal and Fractional Operators", held in Sapienza University of Rome, in April 2019, and dedicated to the retirement of Prof. Renato Spigler (University Roma Tre). Therefore we also wish to dedicate this volume to this occasion, in order to celebrate his scientific contributions in the field of numerical analysis and fractional calculus. The book is suitable for mathematicians, physicists and applied scientists interested in the various aspects of fractional calculus.
Nonnegative Matrices and Applicable Topics in Linear Algebra (Dover Books on Mathematics)
by Alexander GrahamNonnegative matrices is an increasingly important subject in economics, control theory, numerical analysis, Markov chains, and other areas. This concise treatment is directed toward undergraduates who lack specialized knowledge at the postgraduate level of mathematics and related fields, such as mathematical economics and operations research.An Introductory Survey encompasses some aspects of matrix theory and its applications and other relevant topics in linear algebra, including certain facets of graph theory. Subsequent chapters cover various points of the theory of normal matrices, comprising unitary and Hermitian matrices, and the properties of positive definite matrices. An exploration of the main topic, nonnegative matrices, is followed by a discussion of M-matrices. The final chapter examines stochastic, genetic, and economic models. The important concepts are illustrated by simple worked examples. Problems appear at the conclusion of most chapters, with solutions at the end of the book.
Nonoscillation Theory of Functional Differential Equations with Applications
by Elena Braverman Ravi P. Agarwal Alexander Domoshnitsky Leonid BerezanskyThis monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.
Nonoscillation and Oscillation Theory for Functional Differential Equations
by Ravi P. Agarwal Martin Bohner Wan-Tong LiThis book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Nonparametric Bayesian Inference in Biostatistics
by Peter Müller Riten MitraAs chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.
Nonparametric Bayesian Inference: Contributions by Jean-Marie Rolin
by Jean-Pierre Florens Michel MouchartThis book is a compilation of unpublished papers written by Jean-Marie Rolin (with several co-authors) on nonparametric bayesian estimation. Jean-Marie was professor of statistics at University of Louvain and died on November 5th, 2018. He made important contributions in mathematical statistics with applications to different fields like econometrics or biometrics.These papers cover a variety of topics, including: • The Mathematical structure of the Bayesian model and the main concepts (sufficiency, ancillarity, invariance…) • Representation of the Dirichlet processes and of the associated Polya urn model and applications to nonparametric bayesian analysis. • Contributions to duration models and to their non parametric bayesian treatment.