Browse Results

Showing 21,451 through 21,475 of 28,729 results

R Alles-in-einem-Band für Dummies (Für Dummies)

by Joseph Schmuller

Wenn Sie R von Grund auf kennenlernen und auch die fortgeschrittenen Techniken zur Lösung gängiger Aufgaben bei der Datenanalyse mit R beherrschen möchten, dann liegen Sie mit diesem Buch goldrichtig. Es bietet Ihnen nicht nur einen Überblick über die Programmierung in R und die Arbeit mit der Sprache, sondern geht auch auf die Arten von Projekten und Anwendungen ein, die R-Entwicklerinnen und -Entwickler häufig in Angriff nehmen müssen. Statistische Analysen, Datenvisualisierungen, maschinelles Lernen und Datenmanagement mit R: All das lernen Sie mit diesem Buch intensiv kennen.

R Bioinformatics Cookbook: Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis

by Dan MacLean

Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem Key Features Apply modern R packages to handle biological data using real-world examples Represent biological data with advanced visualizations suitable for research and publications Handle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analyses Book Description Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you'll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples. This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse. By the end of this book, you'll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data. What you will learn Employ Bioconductor to determine differential expressions in RNAseq data Run SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and Indels Use ggplot to create and annotate a range of visualizations Query external databases with Ensembl to find functional genomics information Execute large-scale multiple sequence alignment with DECIPHER to perform comparative genomics Use d3.js and Plotly to create dynamic and interactive web graphics Use k-nearest neighbors, support vector machines and random forests to find groups and classify data Who this book is for This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites.

R Companion for Sampling: Design and Analysis, Third Edition

by Yan Lu Sharon L. Lohr

The R Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use functions in base R and contributed packages to perform calculations for the examples in SDA. No prior experience with R is needed. Chapter 1 tells you how to obtain R and RStudio, introduces basic features of the R statistical software environment, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. R features and functions are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use R to select and analyze almost any type of probability sample. All R code and data sets used in this book are available online to help you develop your skills analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology.

R Companion to Epidemiology: Study Design and Data Analysis

by Ajith R

R Companion to Epidemiology: Study Design and Data Analysis is a companion volume to the classic textbook by Mark Woodward, Epidemiology: Study Design and Data Analysis, Third Edition. It aims to equip the reader with sufficient knowledge to use R for practising epidemiology. Towards this aim, it reworks the examples in the textbook, presenting the code followed by an explanation and its result.Key Features: Almost all of the numerical examples in the textbook are reworked in R R code is introduced in small portions and explained thoroughly Complexity of introduced code is increased only gradually More than 300 commands spanning more than 40 libraries are introduced The book is intended primarily to be used as a supplement to the textbook by undergraduate and graduate students in the fields of epidemiology and statistics. It will also serve practitioners and researchers in epidemiology who want to learn R for use in their work.

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics (Cookbook Ser.)

by Paul Teetor Jd Long

Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform basic functionsSimplify data input and outputTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your data

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics (Cookbook Ser.)

by Paul Teetor

With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time." --Jeffrey Ryan, software consultant and R package author

R Data Analysis without Programming

by David W. Gerbing

This book prepares readers to analyze data and interpret statistical results using R more quickly than other texts. R is a challenging program to learn because code must be created to get started. To alleviate that challenge, Professor Gerbing developed lessR. LessR extensions remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables without programming. The text reviews basic statistical procedures with the lessR enhancements added to the standard R environment. Through the use of lessR, R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights of the book include: Quick Starts that introduce readers to the concepts and commands reviewed in the chapters. Margin notes that highlight,define,illustrate,and cross-reference the key concepts.When readers encounter a term previously discussed, the margin notes identify the page number to the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input and an interpretation of the resulting output. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate how to interpret results. Two data sets provided on the website and analyzed multiple times in the book, provide continuity throughout. End of chapter worked problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the lessR program, the book’s data sets referenced in standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, PDF slides for each chapter, solutions to the book’s worked problems, links to R/lessR videos to help readers better understand the program, and more. An ideal supplement for graduate or advanced undergraduate courses in statistics, research methods, or any course in which R is used, taught in departments of psychology, business, education, and other social and health sciences, this book is also appreciated by researchers interested in using R for their data analysis. Prerequisites include basic statistical knowledge. Knowledge of R is not assumed.

R Data Analysis without Programming: Explanation and Interpretation

by David W. Gerbing

The new edition of this innovative book, R Data Analysis without Programming, prepares the readers to quickly analyze data and interpret statistical results using R. Professor Gerbing has developed lessR, a ground-breaking method in alleviating the challenges of R programming. The lessR extends R, removing the need for programming. This edition expands upon the first edition’s introduction to R through lessR, which enables the readers to learn how to organize data for analysis, read the data into R, and generate output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables with simple function calls. The text reviews and explains basic statistical procedures with the lessR enhancements added to the standard R environment. Using lessR, data analysis with R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights along with content new to this edition include: Explanation and Interpretation of all data analysis techniques; much more than a computer manual, this book shows the reader how to explain and interpret the results. Introduces the concepts and commands reviewed in each chapter. Clear, relaxed writing style more effectively communicates the underlying concepts than more stilted academic writing. Extensive margin notes highlight, define, illustrate, and cross-reference the key concepts. When readers encounter a term previously discussed, the margin notes identify the page number for the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input, output, and an interpretation of the results. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate the analysis and how to interpret results. Two data sets are analyzed multiple times in the book, provide continuity throughout. Comprehensive: A wide range of data analysis techniques are presented throughout the book. Integration with machine learning as regression analysis is presented from both the traditional perspective and from the modern machine learning perspective. End of chapter problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the data sets referenced in both standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, R/lessR videos to help readers better understand the program, and more. This book is ideal for graduate and undergraduate courses in statistics beyond the introductory course, research methods, and/or any data analysis course, taught in departments of psychology, business, education, and other social and health sciences; this book is also appreciated by researchers doing data analysis. Prerequisites include basic statistical knowledge, though the concepts are explained from the beginning in the book. Previous knowledge of R is not assumed.

R For College Mathematics and Statistics

by Thomas Pfaff

R for College Mathematics and Statistics encourages the use of R in mathematics and statistics courses. Instructors are no longer limited to ``nice'' functions in calculus classes. They can require reports and homework with graphs. They can do simulations and experiments. R can be useful for student projects, for creating graphics for teaching, as well as for scholarly work. This book presents ways R, which is freely available, can enhance the teaching of mathematics and statistics. <p><p> R has the potential to help students learn mathematics due to the need for precision, understanding of symbols and functions, and the logical nature of code. Moreover, the text provides students the opportunity for experimenting with concepts in any mathematics course.

R For Marketing Research and Analytics (Use R!)

by Chris Chapman Elea McDonnell Feit

The 2nd edition of R for Marketing Research and Analytics continues to be the best place to learn R for marketing research. This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis.Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.The 2nd edition increases the book’s utility for students and instructors with the inclusion of exercises and classroom slides. At the same time, it retains all of the features that make it a vital resource for practitioners: non-mathematical exposition, examples modeled on real world marketing problems, intuitive guidance on research methods, and immediately applicable code.

R Graph Cookbook

by Hrishi V. Mittal

This hands-on guide cuts short the preamble and gets straight to the point - actually creating graphs, instead of just theoretical learning. Each recipe is specifically tailored to fulfill your appetite for visually representing you data in the best way possible. This book is for readers already familiar with the basics of R who want to learn the best techniques and code to create graphics in R in the best way possible. It will also serve as an invaluable reference book for expert R users.

R Graphics Cookbook: Practical Recipes for Visualizing Data

by Winston Chang

This practical guide provides more than 150 recipes to help you generate high-quality graphs quickly, without having to comb through all the details of R’s graphing systems. Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you’re ready to get started.Use R’s default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing

R Graphics, Third Edition (Chapman & Hall/CRC The R Series)

by Paul Murrell

This third edition of Paul Murrell’s classic book on using R for graphics represents a major update, with a complete overhaul in focus and scope. It focuses primarily on the two core graphics packages in R - graphics and grid - and has a new section on integrating graphics. This section includes three new chapters: importing external images in to R; integrating the graphics and grid systems; and advanced SVG graphics.The emphasis in this third edition is on having the ability to produce detailed and customised graphics in a wide variety of formats, on being able to share and reuse those graphics, and on being able to integrate graphics from multiple systems.This book is aimed at all levels of R users. For people who are new to R, this book provides an overview of the graphics facilities, which is useful for understanding what to expect from R's graphics functions and how to modify or add to the output they produce. For intermediate-level R users, this book provides all of the information necessary to perform sophisticated customizations of plots produced in R. For advanced R users, this book contains vital information for producing coherent, reusable, and extensible graphics functions.

R Graphs Cookbook Second Edition

by Jaynal Abedin Hrishi V. Mittal

Targeted at those with an existing familiarity with R programming, this practical guide will appeal directly to programmers interested in learning effective data visualization techniques with R and a wide-range of its associated libraries.

R In Action: Data Analysis And Graphics With R

by Rob Kabacoff

R in Action, Second Edition presents both the R language and the examples that make it so useful for business developers. Focusing on practical solutions, the book offers a crash course in statistics and covers elegant methods for dealing with messy and incomplete data that are difficult to analyze using traditional methods. You'll also master R's extensive graphical capabilities for exploring and presenting data visually. And this expanded second edition includes new chapters on time series analysis, cluster analysis, and classification methodologies, including decision trees, random forests, and support vector machines.

R Markdown Cookbook (Chapman & Hall/CRC The R Series)

by Yihui Xie Christophe Dervieux Emily Riederer

This new book written by the developers of R Markdown is an essential reference that will help users learn and make full use of the software. Those new to R Markdown will appreciate the short, practical examples that address the most common issues users encounter. Frequent users will also benefit from the wide ranging tips and tricks that expose ‘hidden’ features, support customization and demonstrate the many new and varied applications of the software. After reading this book users will learn how to: Enhance your R Markdown content with diagrams, citations, and dynamically generated text Streamline your workflow with child documents, code chunk references, and caching Control the formatting and layout with Pandoc markdown syntax or by writing custom HTML and LaTeX templates Utilize chunk options and hooks to fine-tune how your code is processed Switch between different language engineers to seamlessly incorporate python, D3, and more into your analysis

R Markdown: The Definitive Guide (Chapman & Hall/CRC The R Series)

by Garrett Grolemund J. J. Allaire Yihui Xie

<p>R Markdown: The Definitive Guide is the first official book authored by the core R Markdown developers that provides a comprehensive and accurate reference to the R Markdown ecosystem. With R Markdown, you can easily create reproducible data analysis reports, presentations, dashboards, interactive applications, books, dissertations, websites, and journal articles, while enjoying the simplicity of Markdown and the great power of R and other languages. <p>In this book, you will learn <p> <li>Basics: Syntax of Markdown and R code chunks, how to generate figures and tables, and how to use other computing languages <li>Built-in output formats of R Markdown: PDF/HTML/Word/RTF/Markdown documents and ioslides/Slidy/Beamer/PowerPoint presentations <li>Extensions and applications: Dashboards, Tufte handouts, xaringan/reveal.js presentations, websites, books, journal articles, and interactive tutorials <li>Advanced topics: Parameterized reports, HTML widgets, document templates, custom output formats, and Shiny documents. </p></li> <P><P><i>Advisory: This book offers only partial accessibility. We have kept it in the collection because it is useful for some of our members. Benetech is actively working on projects to improve accessibility issues such as these in the future.</i>

R Packages

by Hadley Wickham

Turn your R code into packages that others can easily download and use. This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author Hadley Wickham's package development philosophy. In the process, you'll work with devtools, roxygen, and testthat, a set of R packages that automate common development tasks. Devtools encapsulates best practices that Hadley has learned from years of working with this programming language.Ideal for developers, data scientists, and programmers with various backgrounds, this book starts you with the basics and shows you how to improve your package writing over time. You'll learn to focus on what you want your package to do, rather than think about package structure.Learn about the most useful components of an R package, including vignettes and unit testsAutomate anything you can, taking advantage of the years of development experience embodied in devtoolsGet tips on good style, such as organizing functions into filesStreamline your development process with devtoolsLearn the best way to submit your package to the Comprehensive R Archive Network (CRAN)Learn from a well-respected member of the R community who created 30 R packages, including ggplot2, dplyr, and tidyr

R Packages: Organize, Test, Document, and Share Your Code

by Jennifer Bryan Hadley Wickham

Turn your R code into packages that others can easily install and use. With this fully updated edition, developers and data scientists will learn how to bundle reusable R functions, sample data, and documentation together by applying the package development philosophy used by the team that maintains the "tidyverse" suite of packages. In the process, you'll learn how to automate common development tasks using a set of R packages, including devtools, usethis, testthat, and roxygen2.Authors Hadley Wickham and Jennifer Bryan from Posit (formerly known as RStudio) help you create packages quickly, then teach you how to get better over time. You'll be able to focus on what you want your package to do as you progressively develop greater mastery of the structure of a package.With this book, you will:Learn the key components of an R package, including code, documentation, and testsStreamline your development process with devtools and the RStudio IDEGet tips on effective habits such as organizing functions into filesGet caught up on important new features in the devtools ecosystemLearn about the art and science of unit testing, using features in the third edition of testthatTurn your existing documentation into a beautiful and user friendly website with pkgdownGain an appreciation of the benefits of modern code hosting platforms, such as GitHub

R Primer (Chapman & Hall/CRC The R Series)

by Claus Thorn Ekstrom

Newcomers to R are often intimidated by the command-line interface, the vast number of functions and packages, or the processes of importing data and performing a simple statistical analysis. The R Primer provides a collection of concise examples and solutions to R problems frequently encountered by new users of this statistical software. This new edition adds coverage of R Studio and reproducible research.

R Programming By Example: Practical, hands-on projects to help you get started with R

by Omar Trejo Peter C. Figliozzi

Key Features Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Book Description R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. What you will learn Discover techniques to leverage R’s features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel

R Programming and Its Applications in Financial Mathematics

by Shuichi Ohsaki Jori Ruppert-Felsot Daisuke Yoshikawa

This book provides an introduction to R programming and a summary of financial mathematics. <P><P>It is not always easy for graduate students to grasp an overview of the theory of finance in an abstract form. For newcomers to the finance industry, it is not always obvious how to apply the abstract theory to the real financial data they encounter. Introducing finance theory alongside numerical applications makes it easier to grasp the subject. <P><P>Popular programming languages like C++, which are used in many financial applications are meant for general-purpose requirements. They are good for implementing large-scale distributed systems for simultaneously valuing many financial contracts, but they are not as suitable for small-scale ad-hoc analysis or exploration of financial data. The R programming language overcomes this problem. R can be used for numerical applications including statistical analysis, time series analysis, numerical methods for pricing financial contracts, etc. <P><P>This book provides an overview of financial mathematics with numerous examples numerically illustrated using the R programming language.

R Programming for Actuarial Science

by Peter McQuire Alfred Kume

R Programming for Actuarial Science Professional resource providing an introduction to R coding for actuarial and financial mathematics applications, with real-life examples R Programming for Actuarial Science provides a grounding in R programming applied to the mathematical and statistical methods that are of relevance for actuarial work. In R Programming for Actuarial Science, readers will find: Basic theory for each chapter to complement other actuarial textbooks which provide foundational theory in depth. Topics covered include compound interest, statistical inference, asset-liability matching, time series, loss distributions, contingencies, mortality models, and option pricing plus many more typically covered in university courses. More than 400 coding examples and exercises, most with solutions, to enable students to gain a better understanding of underlying mathematical and statistical principles. An overall basic to intermediate level of coverage in respect of numerous actuarial applications, and real-life examples included with every topic. Providing a highly useful combination of practical discussion and basic theory, R Programming for Actuarial Science is an essential reference for BSc/MSc students in actuarial science, trainee actuaries studying privately, and qualified actuaries with little programming experience, along with undergraduate students studying finance, business, and economics.

R Programming for Bioinformatics (Chapman & Hall/CRC Computer Science & Data Analysis)

by Robert Gentleman

Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems.Drawing on the author's first-hand exper

R Programming for Mass Spectrometry: Effective and Reproducible Data Analysis

by Randall K. Julian

A practical guide to reproducible and high impact mass spectrometry data analysis R Programming for Mass Spectrometry teaches a rigorous and detailed approach to analyzing mass spectrometry data using the R programming language. It emphasizes reproducible research practices and transparent data workflows and is designed for analytical chemists, biostatisticians, and data scientists working with mass spectrometry. Readers will find specific algorithms and reproducible examples that address common challenges in mass spectrometry alongside example code and outputs. Each chapter provides practical guidance on statistical summaries, spectral search, chromatographic data processing, and machine learning for mass spectrometry. Key topics include: Comprehensive data analysis using the Tidyverse in combination with Bioconductor, a widely used software project for the analysis of biological dataProcessing chromatographic peaks, peak detection, and quality control in mass spectrometry dataApplying machine learning techniques, using Tidymodels for supervised and unsupervised learning, as well as for feature engineering and selection, providing modern approaches to data-driven insightsMethods for producing reproducible, publication-ready reports and web pages using RMarkdown R Programming for Mass Spectrometry is an indispensable guide for researchers, instructors, and students. It provides modern tools and methodologies for comprehensive data analysis. With a companion website that includes code and example datasets, it serves as both a practical guide and a valuable resource for promoting reproducible research in mass spectrometry.

Refine Search

Showing 21,451 through 21,475 of 28,729 results