Browse Results

Showing 21,726 through 21,750 of 27,720 results

¿Quién salta más? / Who Jumps More? (Storytelling Math)

by Grace Lin

¡Libro de cartón grueso ahora disponible en español-inglés bilingüe! La ganadora del Honor de Caldecott, Grace Lin, celebra las matemáticas para todos los niños, ¡en todas partes!Board book now available in bilingual Spanish-English! Caldecott Honor winner Grace Lin celebrates math for every kid, everywhere!Olivia y Mei saltan en la nieve hasta llegar al árbol alto. Mei da unos saltos grandes como un reno. Olivia da muchos saltitos más pequeños como un conejo. Cada una salta "más" de manera diferente. Una exploración juguetona de la medición, la proporción y la amistad.Storytelling Math celebra a los niños usando las matemáticas en sus aventuras diarias mientras juegan, construyen y descubren el mundo que les rodea. Historias alegres y actividades manuales hacen que sea fácil para los niños y sus adultos explorar las matemáticas cotidianas juntos. Desarrollado en colaboración con expertos en matemáticas de TERC, una organización educativa con enfoque en ciencia, tecnología, ingeniería y matemáticas (STEM, por sus siglas en inglés), bajo una subvención de la Fundación Heising-Simons.Olivia and Mei jump in the snow all the way to the tall tree. Mei takes a few big leaps like a deer. Olivia makes lots of smaller hops like a bunny. Each jumps &“more&” in a different way. A playful exploration of measurement, proportion, and friendship.Storytelling Math celebrates children using math in their daily adventures as they play, build, and discover the world around them. Joyful stories and hands-on activities make it easy for kids and their grown-ups to explore everyday math together. Developed in collaboration with math experts at STEM education nonprofit TERC, under a grant from the Heising-Simons Foundation.

Quirky Quantum Concepts

by Eric L. Michelsen

Quirky Quantum Concepts explains the more important and more difficult concepts in theoretical quantum mechanics, especially those which are consistently neglected or confusing in many common expositions. The emphasis is on physical understanding, which is necessary for the development of new, cutting edge science. In particular, this book explains the basis for many standard quantum methods, which are too often presented without sufficient motivation or interpretation. The book is not a simplification or popularization: it is real science for real scientists. Physics includes math, and this book does not shy away from it, but neither does it hide behind it. Without conceptual understanding, math is gibberish. The discussions here provide the experimental and theoretical reasoning behind some of the great discoveries, so the reader may see how discoveries arise from a rational process of thinking, a process which Quirky Quantum Concepts makes accessible to its readers. Quirky Quantum Concepts is therefore a supplement to almost any existing quantum mechanics text. Students and scientists will appreciate the combination of conversational style, which promotes understanding, with thorough scientific accuracy.

Quiver Representations

by Ralf Schiffler

This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel's Theorem. The language of category theory is developed along the way as needed.

R 4 Quick Syntax Reference: A Pocket Guide to the Language, API's and Library

by Margot Tollefson

This handy reference book detailing the intricacies of R covers version 4.x features, including numerous and significant changes to syntax, strings, reference counting, grid units, and more.Starting with the basic structure of R, the book takes you on a journey through the terminology used in R and the syntax required to make R work. You will find looking up the correct form for an expression quick and easy. Some of the new material includes information on RStudio, S4 syntax, working with character strings, and an example using the Twitter API.With a copy of the R 4 Quick Syntax Reference in hand, you will find that you are able to use the multitude of functions available in R and are even able to write your own functions to explore and analyze data.What You Will LearnDiscover the modes and classes of R objects and how to use themUse both packaged and user-created functions in R Import/export data and create new data objects in RCreate descriptive functions and manipulate objects in RTake advantage of flow control and conditional statementsWork with packages such as base, stats, and graphicsWho This Book Is ForThose with programming experience, either new to R, or those with at least some exposure to R but who are new to the latest version.

R Alles-in-einem-Band für Dummies (Für Dummies)

by Joseph Schmuller

Wenn Sie R von Grund auf kennenlernen und auch die fortgeschrittenen Techniken zur Lösung gängiger Aufgaben bei der Datenanalyse mit R beherrschen möchten, dann liegen Sie mit diesem Buch goldrichtig. Es bietet Ihnen nicht nur einen Überblick über die Programmierung in R und die Arbeit mit der Sprache, sondern geht auch auf die Arten von Projekten und Anwendungen ein, die R-Entwicklerinnen und -Entwickler häufig in Angriff nehmen müssen. Statistische Analysen, Datenvisualisierungen, maschinelles Lernen und Datenmanagement mit R: All das lernen Sie mit diesem Buch intensiv kennen.

R and MATLAB (Chapman & Hall/CRC The R Series)

by David E. Hiebeler

The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today’s increasingly interdisciplinary world, R and MATLAB® users from different backgrounds must often work together and share code. R and MATLAB® is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.

R Bioinformatics Cookbook: Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis

by Dan MacLean

Over 60 recipes to model and handle real-life biological data using modern libraries from the R ecosystem Key Features Apply modern R packages to handle biological data using real-world examples Represent biological data with advanced visualizations suitable for research and publications Handle real-world problems in bioinformatics such as next-generation sequencing, metagenomics, and automating analyses Book Description Handling biological data effectively requires an in-depth knowledge of machine learning techniques and computational skills, along with an understanding of how to use tools such as edgeR and DESeq. With the R Bioinformatics Cookbook, you'll explore all this and more, tackling common and not-so-common challenges in the bioinformatics domain using real-world examples. This book will use a recipe-based approach to show you how to perform practical research and analysis in computational biology with R. You will learn how to effectively analyze your data with the latest tools in Bioconductor, ggplot, and tidyverse. The book will guide you through the essential tools in Bioconductor to help you understand and carry out protocols in RNAseq, phylogenetics, genomics, and sequence analysis. As you progress, you will get up to speed with how machine learning techniques can be used in the bioinformatics domain. You will gradually develop key computational skills such as creating reusable workflows in R Markdown and packages for code reuse. By the end of this book, you'll have gained a solid understanding of the most important and widely used techniques in bioinformatic analysis and the tools you need to work with real biological data. What you will learn Employ Bioconductor to determine differential expressions in RNAseq data Run SAMtools and develop pipelines to find single nucleotide polymorphisms (SNPs) and Indels Use ggplot to create and annotate a range of visualizations Query external databases with Ensembl to find functional genomics information Execute large-scale multiple sequence alignment with DECIPHER to perform comparative genomics Use d3.js and Plotly to create dynamic and interactive web graphics Use k-nearest neighbors, support vector machines and random forests to find groups and classify data Who this book is for This book is for bioinformaticians, data analysts, researchers, and R developers who want to address intermediate-to-advanced biological and bioinformatics problems by learning through a recipe-based approach. Working knowledge of R programming language and basic knowledge of bioinformatics are prerequisites.

The R Book

by Michael J. Crawley

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research.This edition:Features full colour text and extensive graphics throughout.Introduces a clear structure with numbered section headings to help readers locate information more efficiently.Looks at the evolution of R over the past five years.Features a new chapter on Bayesian Analysis and Meta-Analysis.Presents a fully revised and updated bibliography and reference section.Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition:'...if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.' (The American Statistician, August 2008)'The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book...' (Professional Pensions, July 2007)

The R Book

by Elinor Jones Simon Harden Michael J. Crawley

A start-to-finish guide to one of the most useful programming languages for researchers in a variety of fields In the newly revised Third Edition of The R Book, a team of distinguished teachers and researchers delivers a user-friendly and comprehensive discussion of foundational and advanced topics in the R software language, which is used widely in science, engineering, medicine, economics, and other fields. The book is designed to be used as both a complete text—readable from cover to cover—and as a reference manual for practitioners seeking authoritative guidance on particular topics. This latest edition offers instruction on the use of the RStudio GUI, an easy-to-use environment for those new to R. It provides readers with a complete walkthrough of the R language, beginning at a point that assumes no prior knowledge of R and very little previous knowledge of statistics. Readers will also find: A thorough introduction to fundamental concepts in statistics and step-by-step roadmaps to their implementation in R; Comprehensive explorations of worked examples in R; A complementary companion website with downloadable datasets that are used in the book; In-depth examination of essential R packages. Perfect for undergraduate and postgraduate students of science, engineering, medicine economics, and geography, The R Book will also earn a place in the libraries of social sciences professionals.

R by Example (Use R!)

by Jim Albert Maria Rizzo

Now in its second edition, R by Example is an example-based introduction to the statistical computing environment that does not assume any previous familiarity with R or other software packages. R functions are presented in the context of interesting applications with real data. The purpose of this book is to illustrate a range of statistical and probability computations using R for people who are learning, teaching, or using statistics. Specifically, it is written for users who have covered at least the equivalent of (or are currently studying) undergraduate level calculus-based courses in statistics. These users are learning or applying exploratory and inferential methods for analyzing data, and this book is intended to be a useful resource for learning how to implement these procedures in R. The new edition includes expanded coverage of ggplot2 graphics, as well as new chapters on importing data and multivariate data methods.

R-Calculus, V: Description Logics (Perspectives in Formal Induction, Revision and Evolution)

by Wei Li Yuefei Sui

This book series consists of two parts, decidable description logics and undecidable description logics. It gives the R-calculi for description logics. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.

R-Calculus, VI: Finite Injury Priority Method (Perspectives in Formal Induction, Revision and Evolution)

by Wei Li Yuefei Sui

This sixth volume of the book series applies finite injury priority method to R-calculi and obtain (in)completeness theorem for binary-valued, Post three-valued, B2^2-valued and L4-valued first-order logics, and extend the method to infinite injury priority method and 0"-method for default logic to produce pseudo-extensions of a default theory, corresponding to different R-calculi. Finite injury priority method and tree constructions are discussed in this book. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic.

An R Companion for Applied Statistics I: Basic Bivariate Techniques

by Danney Rasco

An R Companion for Applied Statistics I: Basic Bivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use it. R is a powerful, flexible, and free tool. However, the flexibility—which eventually becomes a great asset—can make the initial learning curve appear steep. This book introduces a few key aspects of the R tool. As readers become comfortable with these aspects, they develop a foundation from which to more thoroughly explore R and the packages available for it. This introduction does not explain every possible way to analyze data or perform a specific type of analysis. Rather, it focuses on the analyses that are traditionally included in an undergraduate statistics course and provides one or two ways to run these analyses in R. Datasets and scripts to run the examples are provided on an accompanying website. The book has been designed to be an R companion to Warner′s Applied Statistics I, Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide, without reference to the Warner text.

An R Companion for Applied Statistics I: Basic Bivariate Techniques

by Danney Rasco

An R Companion for Applied Statistics I: Basic Bivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use it. R is a powerful, flexible, and free tool. However, the flexibility—which eventually becomes a great asset—can make the initial learning curve appear steep. This book introduces a few key aspects of the R tool. As readers become comfortable with these aspects, they develop a foundation from which to more thoroughly explore R and the packages available for it. This introduction does not explain every possible way to analyze data or perform a specific type of analysis. Rather, it focuses on the analyses that are traditionally included in an undergraduate statistics course and provides one or two ways to run these analyses in R. Datasets and scripts to run the examples are provided on an accompanying website. The book has been designed to be an R companion to Warner′s Applied Statistics I, Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide, without reference to the Warner text.

An R Companion for Applied Statistics II: Multivariable and Multivariate Techniques

by Danney Rasco

An R Companion for Applied Statistics II: Multivariable and Multivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use R to analyze multivariate data. The book focuses on the statistics generally covered in an intermediate or multivariate statistics course and provides one or two ways to run each analysis in R. The book has been designed to be an R companion to Rebecca M. Warner′s Applied Statistics II: Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide for a multivariate statistics course, without reference to the Warner text. Datasets and scripts to run the examples are provided on an accompanying website.

An R Companion for Applied Statistics II: Multivariable and Multivariate Techniques

by Danney Rasco

An R Companion for Applied Statistics II: Multivariable and Multivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use R to analyze multivariate data. The book focuses on the statistics generally covered in an intermediate or multivariate statistics course and provides one or two ways to run each analysis in R. The book has been designed to be an R companion to Rebecca M. Warner′s Applied Statistics II: Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide for a multivariate statistics course, without reference to the Warner text. Datasets and scripts to run the examples are provided on an accompanying website.

R Companion for Sampling: Design and Analysis, Third Edition

by Yan Lu Sharon L. Lohr

The R Companion for Sampling: Design and Analysis, designed to be read alongside Sampling: Design and Analysis, Third Edition by Sharon L. Lohr (SDA; 2022, CRC Press), shows how to use functions in base R and contributed packages to perform calculations for the examples in SDA. No prior experience with R is needed. Chapter 1 tells you how to obtain R and RStudio, introduces basic features of the R statistical software environment, and helps you get started with analyzing data. Each subsequent chapter provides step-by-step guidance for working through the data examples in the corresponding chapter of SDA, with code, output, and interpretation. Tips and warnings help you develop good programming practices and avoid common survey data analysis errors. R features and functions are introduced as they are needed so you can see how each type of sample is selected and analyzed. Each chapter builds on the knowledge developed earlier for simpler designs; after finishing the book, you will know how to use R to select and analyze almost any type of probability sample. All R code and data sets used in this book are available online to help you develop your skills analyzing survey data from social and public opinion research, public health, crime, education, business, agriculture, and ecology.

An R Companion to Applied Regression

by John Fox Sanford Weisberg

An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text. "An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R." –Christopher Hare, University of California, Davis

An R Companion to Applied Regression

by John Fox Sanford Weisberg

An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text. "An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R." –Christopher Hare, University of California, Davis

An R Companion to Linear Statistical Models

by Christopher Hay-Jahans

This work was prepared to serve as an R supplement for textbooks on Linear Statistical Models. It provides computational and coding details on the use of R that textbooks do not. Topics covered include simple and multiple linear regression models, models for one- and two-factor fixed-effects designs, covariance models, and models for randomized complete block designs. The text can serve as both a course supplement and a fairly detailed self-help resource. The development of grass-roots code alongside demonstrations of pre-packaged routines provides users with illustrations on how to develop their own programs with R.

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics (Cookbook Ser.)

by Jd Long Paul Teetor

Perform data analysis with R quickly and efficiently with more than 275 practical recipes in this expanded second edition. The R language provides everything you need to do statistical work, but its structure can be difficult to master. These task-oriented recipes make you productive with R immediately. Solutions range from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem and includes a discussion that explains the solution and provides insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an intermediate user, this book will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform basic functionsSimplify data input and outputTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your data

R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics (Cookbook Ser.)

by Paul Teetor

With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time." --Jeffrey Ryan, software consultant and R package author

R Data Analysis without Programming

by David W. Gerbing

This book prepares readers to analyze data and interpret statistical results using R more quickly than other texts. R is a challenging program to learn because code must be created to get started. To alleviate that challenge, Professor Gerbing developed lessR. LessR extensions remove the need to program. By introducing R through less R, readers learn how to organize data for analysis, read the data into R, and produce output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables without programming. The text reviews basic statistical procedures with the lessR enhancements added to the standard R environment. Through the use of lessR, R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights of the book include: Quick Starts that introduce readers to the concepts and commands reviewed in the chapters. Margin notes that highlight,define,illustrate,and cross-reference the key concepts.When readers encounter a term previously discussed, the margin notes identify the page number to the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input and an interpretation of the resulting output. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate how to interpret results. Two data sets provided on the website and analyzed multiple times in the book, provide continuity throughout. End of chapter worked problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the lessR program, the book’s data sets referenced in standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, PDF slides for each chapter, solutions to the book’s worked problems, links to R/lessR videos to help readers better understand the program, and more. An ideal supplement for graduate or advanced undergraduate courses in statistics, research methods, or any course in which R is used, taught in departments of psychology, business, education, and other social and health sciences, this book is also appreciated by researchers interested in using R for their data analysis. Prerequisites include basic statistical knowledge. Knowledge of R is not assumed.

R Data Analysis without Programming: Explanation and Interpretation

by David W. Gerbing

The new edition of this innovative book, R Data Analysis without Programming, prepares the readers to quickly analyze data and interpret statistical results using R. Professor Gerbing has developed lessR, a ground-breaking method in alleviating the challenges of R programming. The lessR extends R, removing the need for programming. This edition expands upon the first edition’s introduction to R through lessR, which enables the readers to learn how to organize data for analysis, read the data into R, and generate output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables with simple function calls. The text reviews and explains basic statistical procedures with the lessR enhancements added to the standard R environment. Using lessR, data analysis with R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights along with content new to this edition include: Explanation and Interpretation of all data analysis techniques; much more than a computer manual, this book shows the reader how to explain and interpret the results. Introduces the concepts and commands reviewed in each chapter. Clear, relaxed writing style more effectively communicates the underlying concepts than more stilted academic writing. Extensive margin notes highlight, define, illustrate, and cross-reference the key concepts. When readers encounter a term previously discussed, the margin notes identify the page number for the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input, output, and an interpretation of the results. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate the analysis and how to interpret results. Two data sets are analyzed multiple times in the book, provide continuity throughout. Comprehensive: A wide range of data analysis techniques are presented throughout the book. Integration with machine learning as regression analysis is presented from both the traditional perspective and from the modern machine learning perspective. End of chapter problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the data sets referenced in both standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, R/lessR videos to help readers better understand the program, and more. This book is ideal for graduate and undergraduate courses in statistics beyond the introductory course, research methods, and/or any data analysis course, taught in departments of psychology, business, education, and other social and health sciences; this book is also appreciated by researchers doing data analysis. Prerequisites include basic statistical knowledge, though the concepts are explained from the beginning in the book. Previous knowledge of R is not assumed.

R. Edward Freeman’s Selected Works on Stakeholder Theory and Business Ethics (Issues in Business Ethics #53)

by Sergiy D. Dmytriyev R. Edward Freeman

Ed Freeman’s influential ideas on stakeholder theory, business ethics, humanities, and capitalism became foundational in the management field and turned around the mainstream thinking about business. Stakeholder theory developed by Freeman and others posits that business is not as much about profits, but rather about creating value for its stakeholders, including employees, customers, communities, financiers, and suppliers. The relationship between a company and its stakeholders is the essence of business and should be of utmost attention to its managers. Managers should avoid resorting to trade-offs by prioritizing one stakeholder group (e.g., shareholders) over the others and strive to run their companies in the interests of all stakeholders. The idea of pursuing the interests of all stakeholders became revolutionary in management and went far beyond the management field, expanding to Law, Health Care, Education, Public Policy and Administration, and Environmental Policy. This book is a collection of Ed Freeman’s most influential and important works on stakeholder theory as well as business ethics, humanities, and capitalism.

Refine Search

Showing 21,726 through 21,750 of 27,720 results