Browse Results

Showing 23,876 through 23,900 of 28,215 results

Statistics in Plain English, Fourth Edition

by Timothy C. Urdan

This introductory textbook provides an inexpensive, brief overview of statistics to help readers gain a better understanding of how statistics work and how to interpret them correctly. Each chapter describes a different statistical technique, ranging from basic concepts like central tendency and describing distributions to more advanced concepts such as t tests, regression, repeated measures ANOVA, and factor analysis. Each chapter begins with a short description of the statistic and when it should be used. This is followed by a more in-depth explanation of how the statistic works. Finally, each chapter ends with an example of the statistic in use, and a sample of how the results of analyses using the statistic might be written up for publication. A glossary of statistical terms and symbols is also included. Using the author's own data and examples from published research and the popular media, the book is a straightforward and accessible guide to statistics. New features in the fourth edition include: sets of work problems in each chapter with detailed solutions and additional problems online to help students test their understanding of the material, new "Worked Examples" to walk students through how to calculate and interpret the statistics featured in each chapter, new examples from the author's own data and from published research and the popular media to help students see how statistics are applied and written about in professional publications, many more examples, tables, and charts to help students visualize key concepts, clarify concepts, and demonstrate how the statistics are used in the real world. a more logical flow, with correlation directly preceding regression, and a combined glossary appearing at the end of the book, a Quick Guide to Statistics, Formulas, and Degrees of Freedom at the start of the book, plainly outlining each statistic and when students should use them, greater emphasis on (and description of) effect size and confidence interval reporting, reflecting their growing importance in research across the social science disciplines an expanded website at www.routledge.com/cw/urdan with PowerPoint presentations, chapter summaries, a new test bank, interactive problems and detailed solutions to the text's work problems, SPSS datasets for practice, links to useful tools and resources, and videos showing how to calculate statistics, how to calculate and interpret the appendices, and how to understand some of the more confusing tables of output produced by SPSS. Statistics in Plain English, Fourth Edition is an ideal guide for statistics, research methods, and/or for courses that use statistics taught at the undergraduate or graduate level, or as a reference tool for anyone interested in refreshing their memory about key statistical concepts. The research examples are from psychology, education, and other social and behavioral sciences.

Statistics in Plain English, Third Edition

by Timothy C. Urdan

This inexpensive paperback provides a brief, simple overview of statistics to help readers gain a better understanding of how statistics work and how to interpret them correctly. Each chapter describes a different statistical technique, ranging from basic concepts like central tendency and describing distributions to more advanced concepts such as t tests, regression, repeated measures ANOVA, and factor analysis. Each chapter begins with a short description of the statistic and when it should be used. This is followed by a more in-depth explanation of how the statistic works. Finally, each chapter ends with an example of the statistic in use, and a sample of how the results of analyses using the statistic might be written up for publication. A glossary of statistical terms and symbols is also included. New features in the third edition include: a new chapter on Factor and Reliability Analysis especially helpful to those who do and/or read survey research, new "Writing it Up" sections demonstrate how to write about and interpret statistics seen in books and journals, a website at http://www.psypress.com/statistics-in-plain-english with PowerPoint presentations, interactive problems (including an overview of the problem's solution for Instructors) with an IBM SPSS dataset for practice, videos of the author demonstrating how to calculate and interpret most of the statistics in the book, links to useful websites, and an author blog, new section on understanding the distribution of data (ch. 1) to help readers understand how to use and interpret graphs, many more examples, tables, and charts to help students visualize key concepts. Statistics in Plain English, Third Edition is an ideal supplement for statistics, research methods, and/or for courses that use statistics taught at the undergraduate or graduate level, or as a reference tool for anyone interested in refreshing their memory about key statistical concepts. The research examples are from psychology, education, and other social and behavioral sciences.

Statistics in Precision Health: Theory, Methods and Applications (ICSA Book Series in Statistics)

by Ding-Geng Chen Yichuan Zhao

This book discusses statistical methods and their innovative applications in precision health. It serves as a valuable resource to foster the development of this growing field within the context of the big data era. The chapters cover a wide range of topics, including foundational principles, statistical theories, new procedures, advanced methods, and practical applications in precision medicine. Particular attention is devoted to the interplay between precision health, big data, and mobile health research, while also exploring precision medicine's role in clinical trials, electronic health record data analysis, survival analysis, and genomic studies. Targeted at data scientists, statisticians, graduate students, and researchers in academia, industry, and government, this book offers insights into the latest advances in personalized medicine using advanced statistical techniques.

Statistics in Psychology Using R and SPSS

by Klaus Kubinger Dieter Rasch Takuya Yanagida

Statistics in Psychology covers all statistical methods needed in education and research in psychology. This book looks at research questions when planning data sampling, that is to design the intended study and to calculate the sample sizes in advance. In other words, no analysis applies if the minimum size is not determined in order to fulfil certain precision requirements.The book looks at the process of empirical research into the following seven stages:Formulation of the problemStipulation of the precision requirementsSelecting the statistical model for the planning and analysisThe (optimal) design of the experiment or surveyPerforming the experiment or the surveyStatistical analysis of the observed resultsInterpretation of the results.

Statistics in Research and Development (Chapman & Hall/CRC Texts in Statistical Science)

by R. Caulcutt

Many scientists and technologists would like to carry out their own statistical analyses without reference to a professional statistician. Often, however, they have no knowledge of statistics or otherwise do not know how to apply it to research and development problems. The first edition of Statistics in Research and Development was written for the

Statistics in Social Work: An Introduction to Practical Applications

by Professor Amy Batchelor

Understanding statistical concepts is essential for social work professionals. It is key to understanding research and reaching evidence-based decisions in your own practice—but that is only the beginning. If you understand statistics, you can determine the best interventions for your clients. You can use new tools to monitor and evaluate the progress of your client or team. You can recognize biased systems masked by complex models and the appearance of scientific neutrality. For social workers, statistics are not just math, they are a critical practice tool.This concise and approachable introduction to statistics limits its coverage to the concepts most relevant to social workers. Statistics in Social Work guides students through concepts and procedures from descriptive statistics and correlation to hypothesis testing and inferential statistics. Besides presenting key concepts, it focuses on real-world examples that students will encounter in a social work practice. Using concrete illustrations from a variety of potential concentrations and populations, Amy Batchelor creates clear connections between theory and practice—and demonstrates the important contributions statistics can make to evidence-based and rigorous social work practice.

Statistics in Toxicology Using R (Chapman And Hall/crc The R Ser.)

by Ludwig A. Hothorn

The apparent contradiction between statistical significance and biological relevance has diminished the value of statistical methods as a whole in toxicology. Moreover, recommendations for statistical analysis are imprecise in most toxicological guidelines. Addressing these dilemmas, Statistics in Toxicology Using R explains the statistical analysi

Statistics in a Nutshell

by Sarah Boslaugh Paul Andrew Watters

Need to learn statistics as part of your job, or want some help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference that's perfect for anyone with no previous background in the subject. This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrated by graphics, formulas, and plenty of solved examples. Before you know it, you'll learn to apply statistical reasoning and statistical techniques, from basic concepts of probability and hypothesis testing to multivariate analysis. Organized into four distinct sections, Statistics in a Nutshell offers you:Introductory material: Different ways to think about statistics Basic concepts of measurement and probability theoryData management for statistical analysis Research design and experimental design How to critique statistics presented by others Basic inferential statistics: Basic concepts of inferential statistics The concept of correlation, when it is and is not an appropriate measure of association Dichotomous and categorical data The distinction between parametric and nonparametric statistics Advanced inferential techniques: The General Linear Model Analysis of Variance (ANOVA) and MANOVA Multiple linear regression Specialized techniques: Business and quality improvement statistics Medical and public health statistics Educational and psychological statistics Unlike many introductory books on the subject, Statistics in a Nutshell doesn't omit important material in an effort to dumb it down. And this book is far more practical than most college texts, which tend to over-emphasize calculation without teaching you when and how to apply different statistical tests. With Statistics in a Nutshell, you learn how to perform most common statistical analyses, and understand statistical techniques presented in research articles. If you need to know how to use a wide range of statistical techniques without getting in over your head, this is the book you want.

Statistics in a Nutshell: A Desktop Quick Reference (In A Nutshell (o'reilly) Ser.)

by Sarah Boslaugh

Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts.Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book.Learn basic concepts of measurement and probability theory, data management, and research designDiscover basic statistical procedures, including correlation, the t-test, the chi-square and Fisherâ??s exact tests, and techniques for analyzing nonparametric dataLearn advanced techniques based on the general linear model, including ANOVA, ANCOVA, multiple linear regression, and logistic regressionUse and interpret statistics for business and quality improvement, medical and public health, and education and psychologyCommunicate with statistics and critique statistical information presented by others

Statistics in the 21st Century (Chapman & Hall/CRC Monographs on Statistics and Applied Probability)

by Martin T. Wells Martin A. Tanner Adrian E. Raftery

This volume discusses an important area of statistics and highlights the most important statistical advances. It is divided into four sections: statistics in the life and medical sciences, business and social science, the physical sciences and engineering, and theory and methods of statistics.

Statistics in the Health Sciences: Theory, Applications, and Computing (Chapman & Hall/CRC Biostatistics Series)

by Albert Vexler Alan Hutson

"This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semi-parametric and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS."— Vlad Dragalin, Professor, Johnson and Johnson, Spring House, PA "It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and non-parametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject." — Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures. The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.

Statistics in the Public Interest: In Memory of Stephen E. Fienberg (Springer Series in the Data Sciences)

by William F. Eddy Judith M. Tanur Alicia L. Carriquiry

This edited volume surveys a variety of topics in statistics and the social sciences in memory of the late Stephen Fienberg. The book collects submissions from a wide range of contemporary authors to explore the fields in which Fienberg made significant contributions, including contingency tables and log-linear models, privacy and confidentiality, forensics and the law, the decennial census and other surveys, the National Academies, Bayesian theory and methods, causal inference and causes of effects, mixed membership models, and computing and machine learning. Each section begins with an overview of Fienberg’s contributions and continues with chapters by Fienberg’s students, colleagues, and collaborators exploring recent advances and the current state of research on the topic. In addition, this volume includes a biographical introduction as well as a memorial concluding chapter comprised of entries from Stephen and Joyce Fienberg’s close friends, former students, colleagues, and other loved ones, as well as a photographic tribute.

Statistics of Extremes

by E. J. Gumbel

Universally acknowledged as the classic text about statistics of extremes, this volume is geared toward use by statisticians and statistically minded scientists and engineers. It employs elementary terms to explain applications, favors graphical procedures over calculations, and presents simple generalizations as exercises -- all of which contribute to its value for students. Starting with definitions of its aims and tools, the text proceeds to discussions of order statistics and their exceedances, exact distribution of extremes, and analytical study of extremes. Additional topics include the first asymptotic distribution; uses of the first, second, and third asymptotes; and the range. 1958 edition. 44 tables. 97 graphs.

Statistics of Financial Markets: An Introduction (Universitext)

by Wolfgang Karl Härdle Jürgen Franke Christian Matthias Hafner

Now in its fifth edition, this book offers a detailed yet concise introduction to the growing field of statistical applications in finance. The reader will learn the basic methods for evaluating option contracts, analyzing financial time series, selecting portfolios and managing risks based on realistic assumptions about market behavior. The focus is both on the fundamentals of mathematical finance and financial time series analysis, and on applications to specific problems concerning financial markets, thus making the book the ideal basis for lectures, seminars and crash courses on the topic. All numerical calculations are transparent and reproducible using quantlets.For this new edition the book has been updated and extensively revised and now includes several new aspects such as neural networks, deep learning, and crypto-currencies. Both R and Matlab code, together with the data, can be downloaded from the book’s product page and the Quantlet platform.The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allow readers to reproduce the tables, pictures and calculations inside this Springer book.“This book provides an excellent introduction to the tools from probability and statistics necessary to analyze financial data. Clearly written and accessible, it will be very useful to students and practitioners alike.”Yacine Ait-Sahalia, Otto Hack 1903 Professor of Finance and Economics, Princeton University

Statistics of Financial Markets: Exercises and Solutions

by Wolfgang Karl Härdle Brenda López-Cabrera Szymon Borak

Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.

Statistics of Medical Imaging (Chapman & Hall/CRC Interdisciplinary Statistics)

by Tianhu Lei

Statistical investigation into technology not only provides a better understanding of the intrinsic features of the technology (analysis), but also leads to an improved design of the technology (synthesis). Physical principles and mathematical procedures of medical imaging technologies have been extensively studied during past decades. However, les

Statistics of the Galaxy Distribution

by Vicent J. Martinez Enn Saar

Over the last decade, statisticians have developed new statistical tools in the field of spatial point processes. At the same time, observational efforts have yielded a huge amount of new cosmological data to analyze. Although the main tools in astronomy for comparing theoretical results with observation are statistical, in recent years, cosmologis

Statistics on the Table: The History of Statistical Concepts and Methods

by Stephen M. Stigler

This lively collection of essays examines in witty detail the history of some of the concepts involved in bringing statistical argument "to the table," and some of the pitfalls that have been encountered. The topics range from seventeenth-century medicine and the circulation of blood, to the cause of the Great Depression and the effect of the California gold discoveries of 1848 upon price levels, to the determinations of the shape of the Earth and the speed of light, to the meter of Virgil's poetry and the prediction of the Second Coming of Christ. The title essay tells how the statistician Karl Pearson came to issue the challenge to put "statistics on the table" to the economists Marshall, Keynes, and Pigou in 1911. The 1911 dispute involved the effect of parental alcoholism upon children, but the challenge is general and timeless: important arguments require evidence, and quantitative evidence requires statistical evaluation. Some essays examine deep and subtle statistical ideas such as the aggregation and regression paradoxes; others tell of the origin of the Average Man and the evaluation of fingerprints as a forerunner of the use of DNA in forensic science. Several of the essays are entirely nontechnical; all examine statistical ideas with an ironic eye for their essence and what their history can tell us about current disputes.

Statistics with Applications in Biology and Geology

by Preben Blaesild Jorgen Granfeldt

The use of statistics is fundamental to many endeavors in biology and geology. For students and professionals in these fields, there is no better way to build a statistical background than to present the concepts and techniques in a context relevant to their interests. Statistics with Applications in Biology and Geology provides a practical introduction to using fundamental parametric statistical models frequently applied to data analysis in biology and geology.Based on material developed for an introductory statistics course and classroom tested for nearly 10 years, this treatment establishes a firm basis in models, the likelihood method, and numeracy. The models addressed include one sample, two samples, one- and two-way analysis of variance, and linear regression for normal data and similar models for binomial, multinomial, and Poisson data. Building on the familiarity developed with those models, the generalized linear models are introduced, making it possible for readers to handle fairly complicated models for both continuous and discrete data. Models for directional data are treated as well. The emphasis is on parametric models, but the book also includes a chapter on the most important nonparametric tests.This presentation incorporates the use of the SAS statistical software package, which authors use to illustrate all of the statistical tools described. However, to reinforce understanding of the basic concepts, calculations for the simplest models are also worked through by hand. SAS programs and the data used in the examples and exercises are available on the Internet.

Statistics with Confidence: Confidence Intervals and Statistical Guidelines

by David Machin Douglas G Altman Trevor N Bryant Martin J Gardner

This highly popular introduction to confidence intervals has been thoroughly updated and expanded. It includes methods for using confidence intervals, with illustrative worked examples and extensive guidelines and checklists to help the novice.

Statistics with JMP

by Peter Goos David Meintrup

Peter Goos, Department of Statistics, University ofLeuven, Faculty of Bio-Science Engineering and University ofAntwerp, Faculty of Applied Economics, BelgiumDavid Meintrup, Department of Mathematics and Statistics,University of Applied Sciences Ingolstadt, Faculty of MechanicalEngineering, GermanyThorough presentation of introductory statistics and probabilitytheory, with numerous examples and applications using JMPDescriptive Statistics and Probability provides anaccessible and thorough overview of the most important descriptivestatistics for nominal, ordinal and quantitative data withparticular attention to graphical representations. The authorsdistinguish their approach from many modern textbooks ondescriptive statistics and probability theory by offering acombination of theoretical and mathematical depth, and clear anddetailed explanations of concepts. Throughout the book, theuser-friendly, interactive statistical software package JMP is usedfor calculations, the computation of probabilities and the creationof figures. The examples are explained in detail, and accompaniedby step-by-step instructions and screenshots. The reader willtherefore develop an understanding of both the statistical theoryand its applications.Traditional graphs such as needle charts, histograms and pie chartsare included, as well as the more modern mosaic plots, bubble plotsand heat maps. The authors discuss probability theory, particularlydiscrete probability distributions and continuous probabilitydensities, including the binomial and Poisson distributions, andthe exponential, normal and lognormal densities. They use numerousexamples throughout to illustrate these distributions anddensities.Key features:Introduces each concept with practical examples anddemonstrations in JMP.Provides the statistical theory including detailed mathematicalderivations.Presents illustrative examples in each chapter accompanied bystep-by-step instructions and screenshots to help develop thereader's understanding of both the statistical theory and itsapplications.A supporting website with data sets and other teachingmaterials.This book is equally aimed at students in engineering, economicsand natural sciences who take classes in statistics as well as atmasters/advanced students in applied statistics and probabilitytheory. For teachers of applied statistics, this book provides arich resource of course material, examples and applications.

Statistics with JMP: Hypothesis Tests, Anova And Regression

by Peter Goos David Meintrup

Statistics with JMP: Hypothesis Tests, ANOVA and Regression Peter Goos, University of Leuven and University of Antwerp, Belgium David Meintrup, University of Applied Sciences Ingolstadt, Germany A first course on basic statistical methodology using JMP This book provides a first course on parameter estimation (point estimates and confidence interval estimates), hypothesis testing, ANOVA and simple linear regression. The authors approach combines mathematical depth with numerous examples and demonstrations using the JMP software. Key features: Provides a comprehensive and rigorous presentation of introductory statistics that has been extensively classroom tested. Pays attention to the usual parametric hypothesis tests as well as to non-parametric tests (including the calculation of exact p-values). Discusses the power of various statistical tests, along with examples in JMP to enable in-sight into this difficult topic. Promotes the use of graphs and confidence intervals in addition to p-values. Course materials and tutorials for teaching are available on the book's companion website. Masters and advanced students in applied statistics, industrial engineering, business engineering, civil engineering and bio-science engineering will find this book beneficial. It also provides a useful resource for teachers of statistics particularly in the area of engineering.

Statistics with Julia: Fundamentals for Data Science, Machine Learning and Artificial Intelligence (Springer Series in the Data Sciences)

by Yoni Nazarathy Hayden Klok

This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book’s associated GitHub repository online.See what co-creators of the Julia language are saying about the book:Professor Alan Edelman, MIT: With “Statistics with Julia”, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics. The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer. Everything you need is here in one nicely written self-contained reference. Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.

Statistics with Posterior Probability and a PHC Curve

by Hideki Toyoda

This textbook reconstructs the statistics curriculum from the perspective of posterior probability. In recent years, there have been several reports that the results of studies using significant tests cannot be reproduced. It is a problem called a “reproducibility crisis”. For example, suppose we could reject the null hypothesis that “the average number of days to recovery in patients who took a new drug was the same as that in the control group”. However, rejecting the null hypothesis is only a necessary condition for the new drug to be effective. Even if the necessary conditions are met, it does not necessarily mean that the new drug is effective. In fact, there are many cases where the effect is not reproduced. Sufficient conditions should be presented, such as “the average number of days until recovery in patients who take new drugs is sufficiently short compared to the control group, evaluated from a medical point of view”, without paying attention to necessary conditions. This book reconstructs statistics from the perspective of PHC, i.e., probability that a research hypothesis is correct. For example, the PHC curve shows the posterior probability that the statement “The average number of days until recovery for patients taking a new drug is at least θ days shorter than that of the control group” is correct as a function of θ. Using the PHC curve makes it possible to discuss the sufficient conditions rather than the necessary conditions for being an efficient treatment. The value of statistical research should be evaluated with concrete indicators such as “90% probability of being at least 3 days shorter”, not abstract metrics like the p-value.

Statistics with R: A Beginner's Guide

by Robert Stinerock

The dynamic, student focused textbook provides step-by-step instruction in the use of R and of statistical language as a general research tool. It is ideal for anyone hoping to: Complete an introductory course in statistics Prepare for more advanced statistical courses Gain the transferable analytical skills needed to interpret research from across the social sciences Learn the technical skills needed to present data visually Acquire a basic competence in the use of R. The book provides readers with the conceptual foundation to use applied statistical methods in everyday research. Each statistical method is developed within the context of practical, real-world examples and is supported by carefully developed pedagogy and jargon-free definitions. Theory is introduced as an accessible and adaptable tool and is always contextualized within the pragmatic context of real research projects and definable research questions. Author Robert Stinerock has also created a wide range of online resources, including: R scripts, complete solutions for all exercises, data files for each chapter, video and screen casts, and interactive multiple-choice quizzes.

Refine Search

Showing 23,876 through 23,900 of 28,215 results