- Table View
- List View
Stochastic Dynamics in Computational Biology (Frontiers in Applied Dynamical Systems: Reviews and Tutorials #8)
by Stefanie Winkelmann Christof SchütteThe aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.
Stochastic Dynamics of Marine Structures
by Arvid Naess Torgeir MoanStochastic Dynamics of Marine Structures is a text for students and reference for professionals on the basic theory and methods used for stochastic modeling and analysis of marine structures subjected to environmental loads. The first part of the book provides a detailed introduction to the basic dynamic analysis of structures, which serves as a foundation for later chapters on stochastic response analysis. This includes an extensive chapter on the finite element method. A careful introduction to stochastic modeling is provided, which includes the concepts: stochastic process, variance spectrum, random environmental processes, response spectrum, response statistics, and short- and long-term extreme value models. The second part of the book offers detailed discussions of limit state design approaches, fatigue design methods, the equations of motion for dynamic structures, and numerical solution techniques. The final chapter highlights methods for prediction of extreme values from measured data or data obtained by Monte Carlo simulation.
Stochastic Dynamics of Structures
by Abdelkhalak El Hami Bouchaib RadiThis book is dedicated to the general study of the dynamics of mechanical structures with consideration of uncertainties. The goal is to get the appropriate forms of a part in minimizing a given criterion. In all fields of structural mechanics, the impact of good design of a room is very important to its strength, its life and its use in service. The development of the engineer's art requires considerable effort to constantly improve structural design techniques.
Stochastic Dynamics Out of Equilibrium: Institut Henri Poincaré, Paris, France, 2017 (Springer Proceedings in Mathematics & Statistics #282)
by Giambattista Giacomin Stefano Olla Ellen Saada Herbert Spohn Gabriel StoltzStemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments.It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown.The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics.The present volume is indispensable reading for researchers and Ph.D. students working in such areas.
Stochastic Equations for Complex Systems
by Stefan Heinz Hakima BessaihMathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics. The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality. This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations and their applications. It contributes to a growing understanding of concepts and terminology used by mathematicians, engineers, and physicists in this relatively young and quickly expanding field.
Stochastic Equations in Infinite Dimensions
by Giuseppe Da PratoThe aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic Financial Models (Chapman and Hall/CRC Financial Mathematics Series)
by Douglas KennedyFilling the void between surveys of the field with relatively light mathematical content and books with a rigorous, formal approach to stochastic integration and probabilistic ideas, Stochastic Financial Models provides a sound introduction to mathematical finance. The author takes a classical applied mathematical approach, focusing on calculations
Stochastic Foundations in Movement Ecology
by Vicenç Méndez Daniel Campos Frederic BartumeusThis book presents the fundamental theory for non-standard diffusion problems in movement ecology. Lévy processes and anomalous diffusion have shown to be both powerful and useful tools for qualitatively and quantitatively describing a wide variety of spatial population ecological phenomena and dynamics, such as invasion fronts and search strategies. Adopting a self-contained, textbook-style approach, the authors provide the elements of statistical physics and stochastic processes on which the modeling of movement ecology is based and systematically introduce the physical characterization of ecological processes at the microscopic, mesoscopic and macroscopic levels. The explicit definition of these levels and their interrelations is particularly suitable to coping with the broad spectrum of space and time scales involved in bio-ecological problems. Including numerous exercises (with solutions), this text is aimed at graduate students and newcomers in this field at the interface of theoretical ecology, mathematical biology and physics.
Stochastic Frontier Analysis
by Subal C. Kumbhakar C. A. Knox LovellModern textbook presentations of production economics typically treat producers as successful optimizers. Conventional econometric practice has generally followed this paradigm, and least squares based regression techniques have been used to estimate production, cost, profit and other functions. In such a framework deviations from maximum output, from minimum cost and cost minimizing input demands, and from maximum profit and profit maximizing output supplies and input demands, are attributed exclusively to random statistical noise. However casual empiricism and the business press both make persuasive cases for the argument that, although producers may indeed attempt to optimize, they do not always succeed. This book develops econometric techniques for the estimation of production, cost and profit frontiers, and for the estimation of the technical and economic efficiency with which producers approach these frontiers. Since these frontiers envelop rather than intersect the data, and since the authors continue to maintain the traditional econometric belief in the presence of external forces contributing to random statistical noise, the work is titled Stochastic Frontier Analysis.
Stochastic Game Strategies and their Applications
by Bor-Sen ChenGame theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H∞ game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
Stochastic Games and Related Concepts (HBA Lecture Notes in Mathematics #2)
by T. Parthasarathy Sujatha BabuThis book discusses stochastic game theory and related concepts. Topics focused upon in the book include matrix games, finite, infinite, and undiscounted stochastic games, n-player cooperative games, minimax theorem, and more. In addition to important definitions and theorems, the book provides readers with a range of problem-solving techniques and exercises. This book is of value to graduate students and readers of probability and statistics alike.
Stochastic Geometry: Modern Research Frontiers (Lecture Notes in Mathematics #2237)
by David CoupierThis volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.
Stochastic Geometry: Likelihood and Computation (Chapman And Hall/crc Monographs On Statistics And Applied Probability Ser. #80)
by Wilfrid S. KendallStochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible applications. Stochastic Geometry: Likelihood and Computation provides a coordinated collection of chapters on important aspects of the rapidly developing field of stochastic geometry, including: o a "crash-course" introduction to key stochastic geometry themeso considerations of geometric sampling bias issueso tesselationso shapeo random setso image analysiso spectacular advances in likelihood-based inference now available to stochastic geometry through the techniques of Markov chain Monte Carlo
Stochastic Geometry Analysis of Cellular Networks
by Martin Haenggi Bartłomiej Błaszczyszyn Paul Keeler Sayandev MukherjeeAchieve faster and more efficient network design and optimization with this comprehensive guide. Some of the most prominent researchers in the field explain the very latest analytic techniques and results from stochastic geometry for modeling the signal-to-interference-plus-noise ratio (SINR) distribution in heterogeneous cellular networks. This book will help you understand the effects of combining different system deployment parameters on such key performance indicators as coverage and capacity, enabling efficient allocation of simulation resources. In addition to covering results for network models based on the Poisson point process, this book presents recent results for when non-Poisson base station configurations appear Poisson due to random propagation effects such as fading and shadowing, as well as non-Poisson models for base station configurations, with a focus on determinantal point processes and tractable approximation methods. Theoretical results are illustrated with practical long-term evolution (LTE) applications and compared with real-world deployment results.
Stochastic Geometry Analysis of Multi-Antenna Wireless Networks
by Xianghao Yu Chang Li Jun Zhang Khaled B. LetaiefThis book presents a unified framework for the tractable analysis of large-scale, multi-antenna wireless networks using stochastic geometry. This mathematical analysis is essential for assessing and understanding the performance of complicated multi-antenna networks, which are one of the foundations of 5G and beyond networks to meet the ever-increasing demands for network capacity. Describing the salient properties of the framework, which makes the analysis of multi-antenna networks comparable to that of their single-antenna counterparts, the book discusses effective design approaches that do not require complex system-level simulations. It also includes various application examples with different multi-antenna network models to illustrate the framework’s effectiveness.
Stochastic Geometry and Its Applications
by Wilfrid S. Kendall Dietrich Stoyan Sung Nok Chiu Joseph MeckeAn extensive update to a classic textStochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis.The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right.This edition:Presents a wealth of models for spatial patterns and related statistical methods.Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years.Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas.Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments.Illustrate the forefront theory of random sets, with many applications.Adds new results to the discussion of fibre and surface processes.Offers an updated collection of useful stereological methods.Includes 700 new references.Is written in an accessible style enabling non-mathematicians to benefit from this book.Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Stochastic Geometry for Wireless Networks
by Martin HaenggiCovering point process theory, random geometric graphs and coverage processes, this rigorous introduction to stochastic geometry will enable you to obtain powerful, general estimates and bounds of wireless network performance and make good design choices for future wireless architectures and protocols that efficiently manage interference effects. Practical engineering applications are integrated with mathematical theory, with an understanding of probability the only prerequisite. At the same time, stochastic geometry is connected to percolation theory and the theory of random geometric graphs and accompanied by a brief introduction to the R statistical computing language. Combining theory and hands-on analytical techniques with practical examples and exercises, this is a comprehensive guide to the spatial stochastic models essential for modelling and analysis of wireless network performance.
Stochastic Geometry, Spatial Statistics and Random Fields
by Evgeny SpodarevThis volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.
Stochastic H2/H ∞ Control: A Nash Game Approach
by Weihai Zhang Lihua Xie Bor-Sen ChenThe H∞ control has been one of the important robust control approaches since the 1980s. This book extends the area to nonlinear stochastic H2/H∞ control, and studies more complex and practically useful mixed H2/H∞ controller synthesis rather than the pure H∞ control. Different from the commonly used convex optimization method, this book applies the Nash game approach to give necessary and sufficient conditions for the existence and uniqueness of the mixed H2/H∞ control. Researchers will benefit from our detailed exposition of the stochastic mixed H2/H∞ control theory, while practitioners can apply our efficient algorithms to address their practical problems.
Stochastic Integration in Banach Spaces
by Vidyadhar Mandrekar Barbara RüdigerConsidering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integration theory, existence and uniqueness results and stability theory. The results will be of particular interest to natural scientists and the finance community. Readers should ideally be familiar with stochastic processes and probability theory in general, as well as functional analysis and in particular the theory of operator semigroups.
Stochastic Interest Rates
by Daragh Mcinerney Tomasz ZastawniakThis volume in the Mastering Mathematical Finance series strikes just the right balance between mathematical rigour and practical application. Existing books on the challenging subject of stochastic interest rate models are often too advanced for Master's students or fail to include practical examples. Stochastic Interest Rates covers practical topics such as calibration, numerical implementation and model limitations in detail. The authors provide numerous exercises and carefully chosen examples to help students acquire the necessary skills to deal with interest rate modelling in a real-world setting. In addition, the book's webpage at www. cambridge. org/9781107002579 provides solutions to all of the exercises as well as the computer code (and associated spreadsheets) for all numerical work, which allows students to verify the results.
Stochastic Lagrangian Adaptation (SpringerBriefs in Mathematics)
by David Levanony Peter E. CainesThis book introduces a cutting-edge continuous time stochastic linear quadratic (LQ) adaptive control algorithm for fully observed linear stochastic systems with unknown parameters. The adaptive estimation algorithm is engineered to drive the maximum likelihood estimate into the set of parameters representing the true closed-loop dynamics. By incorporating a performance monitoring feature, this approach ensures that the estimate converges to the true system parameters. Concurrently, it delivers optimal long-term LQ closed-loop performance. This groundbreaking work offers a significant advancement in the field of stochastic control systems.
Stochastic Linear-Quadratic Optimal Control Theory: Differential Games and Mean-Field Problems (SpringerBriefs in Mathematics)
by Jingrui Sun Jiongmin YongThis book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents results for two-player differential games and mean-field optimal control problems in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, the book identifies, for the first time, the interconnections between the existence of open-loop and closed-loop Nash equilibria, solvability of the optimality system, and solvability of the associated Riccati equation, and also explores the open-loop solvability of mean-filed linear-quadratic optimal control problems. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.
Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions (SpringerBriefs in Mathematics)
by Jingrui Sun Jiongmin YongThis book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents the results in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, it precisely identifies, for the first time, the interconnections between three well-known, relevant issues – the existence of optimal controls, solvability of the optimality system, and solvability of the associated Riccati equation. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.
Stochastic Mechanics: The Unification of Quantum Mechanics with Brownian Motion (SpringerBriefs in Physics)
by Folkert KuipersStochastic mechanics is a theory that holds great promise in resolving the mathematical and interpretational issues encountered in the canonical and path integral formulations of quantum theories. It provides an equivalent formulation of quantum theories, but substantiates it with a mathematically rigorous stochastic interpretation by means of a stochastic quantization prescription.The book builds on recent developments in this theory, and shows that quantum mechanics can be unified with the theory of Brownian motion in a single mathematical framework. Moreover, it discusses the extension of the theory to curved spacetime using second order geometry, and the induced Itô deformations of the spacetime symmetries.The book is self-contained and provides an extensive review of stochastic mechanics of the single spinless particle. The book builds up the theory on a step by step basis. It starts, in chapter 2, with a review of the classical particle subjected to scalar and vector potentials. In chapter 3, the theory is extended to the study of a Brownian motion in any potential, by the introduction of a Gaussian noise. In chapter 4, the Gaussian noise is complexified. The result is a complex diffusion theory that contains both Brownian motion and quantum mechanics as a special limit. In chapters 5, the theory is extended to relativistic diffusion theories. In chapter 6, the theory is further generalized to the context of pseudo-Riemannian geometry. Finally, in chapter 7, some interpretational aspects of the stochastic theory are discussed in more detail. The appendices concisely review relevant notions from probability theory, stochastic processes, stochastic calculus, stochastic differential geometry and stochastic variational calculus.The book is aimed at graduate students and researchers in theoretical physics and applied mathematics with an interest in the foundations of quantum theory and Brownian motion. The book can be used as reference material for courses on and further research in stochastic mechanics, stochastic quantization, diffusion theories on curved spacetimes and quantum gravity.