Browse Results

Showing 7,201 through 7,225 of 28,518 results

Decorrelative Mollifier Gravimetry: Basics, Ideas, Concepts, and Examples (Geosystems Mathematics)

by Willi Freeden

This monograph presents the geoscientific context arising in decorrelative gravitational exploration to determine the mass density distribution inside the Earth. First, an insight into the current state of research is given by reducing gravimetry to mathematically accessible, and thus calculable, decorrelated models. In this way, the various unresolved questions and problems of gravimetry are made available to a broad scientific audience and the exploration industry. New theoretical developments will be given, and innovative ways of modeling geologic layers and faults by mollifier regularization techniques are shown.This book is dedicated to surface as well as volume geology with potential data primarily of terrestrial origin. For deep geology, the geomathematical decorrelation methods are to be designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Bridging several different geo-disciplines, this book leads in a cycle from the potential measurements made by geoengineers, to the cleansing of data by geophysicists and geoengineers, to the subsequent theory and model formation, computer-based implementation, and numerical calculation and simulations made by geomathematicians, to interpretation by geologists, and, if necessary, back. It therefore spans the spectrum from geoengineering, especially geodesy, via geophysics to geomathematics and geology, and back.Using the German Saarland area for methodological tests, important new fields of application are opened, particularly for regions with mining-related cavities or dense development in today's geo-exploration.

Dedekinds Theorie der ganzen algebraischen Zahlen: Die verlorene Neufassung des XI. Supplements zu Dirichlets Vorlesungen über Zahlentheorie

by Katrin Scheel

Dieses Buch stellt anhand des Nachlasses von Richard Dedekind eine Rekonstruktion des überarbeiteten XI. Supplements zur geplanten 5. Auflage von P. G. Lejeune Dirichlets Vorlesungen über Zahlentheorie mit einem Kommentar von Peter Ullrich zur Verfügung. Die von Dedekind herausgegebenen und erweiterten "Vorlesungen über Zahlentheorie" seines Lehrers Dirichlet und vor allem die umfangreichen angefügten Supplemente gelten als eines der Hauptwerke Dedekinds. Für die Geschichte der modernen Algebra ist das XI. Supplement "Über die Theorie der ganzen algebraischen Zahlen" von besonderem Interesse, da es die Begründung der Idealtheorie darstellt. Dedekind bereitete zu Beginn des 20. Jahrhunderts eine 5. Auflage der Vorlesungen von Dirichlet mit überarbeiteten Supplementen vor, die aber nicht mehr veröffentlicht wurde. Die Autorin dieses Bandes hat die Transkriptionsarbeiten und Editierung aus dem Dedekind Nachlass vorgenommen und ein einführendes Kapitel hinzugefügt.

Deductive Geometry (Dover Books on Mathematics)

by E. A. Maxwell

This concise review examines the geometry of the straight line, circle, plane, and sphere as well as their associated configurations, including the triangle and the cylinder. Aimed at university undergraduates, the treatment is also useful for advanced students at the secondary level.The straightforward approach begins with a recapitulation of previous work on the subject, proceeding to explorations of advanced plane geometry, solid geometry with some reference to the geometry of the sphere, and a chapter on the nature of space, including considerations of such properties as congruence, similarity, and symmetry. The text concludes with a brief account of the elementary transformations of projection and inversion. Numerous examples appear throughout the book.

Deep Data Analytics for New Product Development

by Walter R. Paczkowski

This book presents and develops the deep data analytics for providing the information needed for successful new product development. Deep Data Analytics for New Product Development has a simple theme: information about what customers need and want must be extracted from data to effectively guide new product decisions regarding concept development, design, pricing, and marketing. The benefits of reading this book are twofold. The first is an understanding of the stages of a new product development process from ideation through launching and tracking, each supported by information about customers. The second benefit is an understanding of the deep data analytics for extracting that information from data. These analytics, drawn from the statistics, econometrics, market research, and machine learning spaces, are developed in detail and illustrated at each stage of the process with simulated data. The stages of new product development and the supporting deep data analytics at each stage are not presented in isolation of each other, but are presented as a synergistic whole. This book is recommended reading for analysts involved in new product development. Readers with an analytical bent or who want to develop analytical expertise would also greatly benefit from reading this book, as well as students in business programs.

Deep Down Things: The Breathtaking Beauty of Particle Physics

by Bruce A. Schumm

A useful scientific theory, claimed Einstein, must be explicable to any intelligent person. In Deep Down Things, experimental particle physicist Bruce Schumm has taken this dictum to heart, providing in clear, straightforward prose an elucidation of the Standard Model of particle physics—a theory that stands as one of the crowning achievements of twentieth-century science. In this one-of-a-kind book, the work of many of the past century's most notable physicists, including Einstein, Schrodinger, Heisenberg, Dirac, Feynman, Gell-Mann, and Weinberg, is knit together in a thorough and accessible exposition of the revolutionary notions that underlie our current view of the fundamental nature of the physical world. Schumm, who has spent much of his life emmersed in the subatomic world, goes far beyond a mere presentation of the "building blocks" of matter, bringing to life the remarkable connection between the ivory tower world of the abstract mathematician and the day-to-day, life-enabling properties of the natural world. Schumm leaves us with an insight into the profound open questions of particle physics, setting the stage for understanding the progress the field is poised to make over the next decade or two.Introducing readers to the world of particle physics, Deep Down Things opens new realms within which are many clues to unraveling the mysteries of the universe.

Deep Generative Modeling

by Jakub M. Tomczak

This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github. The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Deep Generative Modeling

by Jakub M. Tomczak

This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling. In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Deep Generative Models: 4th MICCAI Workshop, DGM4MICCAI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings (Lecture Notes in Computer Science #15224)

by Anirban Mukhopadhyay Sandy Engelhardt Ilkay Oksuz Yixuan Yuan Dorit Mehrof

This book constitutes the proceedings of the 4th workshop on Deep Generative Models for Medical Image Computing and Computer Assisted Intervention, DGM4MICCAI 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024. The 21 papers presented here were carefully reviewed and selected from 40 submissions. These papers deal with a broad range of topics, ranging from methodology (such as Causal inference, Latent interpretation, Generative factor analysis) to Applications (such as Mammography, Vessel imaging, Surgical videos and more).

Deep Homology?

by Held Lewis I. Jr.

Humans and flies look nothing alike, yet their genetic circuits are remarkably similar. Here, Lewis I. Held, Jr compares the genetics and development of the two to review the evidence for deep homology, the biggest discovery from the emerging field of evolutionary developmental biology. Remnants of the operating system of our hypothetical common ancestor 600 million years ago are compared in chapters arranged by region of the body, from the nervous system, limbs and heart, to vision, hearing and smell. Concept maps provide a clear understanding of the complex subjects addressed, while encyclopaedic tables offer comprehensive inventories of genetic information. Written in an engaging style with a reference section listing thousands of relevant publications, this is a vital resource for scientific researchers, and graduate and undergraduate students.

Deep Learning Applications for Cyber Security (Advanced Sciences and Technologies for Security Applications)

by Mamoun Alazab MingJian Tang

Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.

Deep Learning Applications in Operations Research (Advances in Computational Collective Intelligence)

by Gunjan Mukherjee Aryan Chaudhary Biswadip Basu Mallik Rahul Kar

The model-based approach for carrying out the classification and identification of tasks has led to progression of the machine learning paradigm in diversified fields of technology. Deep Learning Applications in Operations Research presents the varied applications of this model-based approach. Apart from the classification process, the machine learning (ML) model has become effective enough to predict future trends of any sort of phenomenon. Such fields as object classification, speech recognition, and face detection have sought extensive applications of artificial intelligence (AI) and machine learning as well. The application of AI and ML has also become increasingly common in the domains of agriculture, health sectors, and insurance.Operations research is the branch of mathematics used to perform many operational tasks in other allied domains, and the book explains how the implementation of automated strategies in optimization and parameter selection can be carried out by AI and ML. Operations research has many beneficial aspects to aid in decision making. Arriving at the proper decision depends on a number of factors; this book examines how AI and ML can be used to model equations and define constraints to solve problems more easily and discover proper and valid solutions. This book also looks at how automation plays a significant role in minimizing human labor and thereby minimizes overall time and cost. Case studies examine how to streamline operations and unearth data to make better business decisions. The concepts presented in this book can bring about and guide unique research directions to the future application of AI-enabled technologies.

Deep Learning Applications, Volume 3 (Advances in Intelligent Systems and Computing #1395)

by Bhiksha Raj Dejing Dou M. Arif Wani Feng Luo

This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel ways of using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.

Deep Learning Applications, Volume 4 (Advances in Intelligent Systems and Computing #1434)

by Vasile Palade M. Arif Wani

This book presents a compilation of extended versions of selected papers from 20th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2021). It focuses on deep learning networks and their applications in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments. It highlights novel ways of using deep neural networks to solve real-world problems, and also offers insights into deep learning architectures and algorithms, making it an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers. The book is fourth in the series published since 2017.

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision: Techniques and Use Cases

by L. Ashok Kumar D. Karthika Renuka

Deep Learning Approach for Natural Language Processing, Speech, and Computer Vision provides an overview of general deep learning methodology and its applications of natural language processing (NLP), speech, and computer vision tasks. It simplifies and presents the concepts of deep learning in a comprehensive manner, with suitable, full-fledged examples of deep learning models, with an aim to bridge the gap between the theoretical and the applications using case studies with code, experiments, and supporting analysis. Features: Covers latest developments in deep learning techniques as applied to audio analysis, computer vision, and natural language processing. Introduces contemporary applications of deep learning techniques as applied to audio, textual, and visual processing. Discovers deep learning frameworks and libraries for NLP, speech, and computer vision in Python. Gives insights into using the tools and libraries in Python for real-world applications. Provides easily accessible tutorials and real-world case studies with code to provide hands-on experience. This book is aimed at researchers and graduate students in computer engineering, image, speech, and text processing.

Deep Learning Architectures: A Mathematical Approach (Springer Series in the Data Sciences)

by Ovidiu Calin

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

Deep Learning Based Solutions for Vehicular Adhoc Networks (Studies in Computational Intelligence #1207)

by Sudeep Tanwar Joel J. P. C. Rodrigues Jitendra Bhatia Malaram Kumhar

This book provides a holistic and comprehensive approach to deep learning for vehicular ad hoc networks (VANETs), covering various aspects such as applications, agency involvement, and potential ethical and legal issues. It begins with discussions on how the transportation system has been converted into Intelligent Transportation System (ITS). The use of VANETs is increasing in the development of ITS to enhance road safety, traffic efficiency, and driver comfort. However, the dynamic nature of vehicular environments and the high mobility of vehicles pose significant challenges to designing and implementing VANETs and ensuring reliable and efficient communication. Deep learning, a subset of machine learning, has the potential to revolutionize vehicular ad hoc networks (VANETs) to enable various applications such as traffic management, collision avoidance, and infotainment. DL has demonstrated great potential in addressing various challenges involved in VANETs by leveraging its ability to learn from vast data and make accurate predictions. It reviews the state-of-the-art DL-based approaches for various applications in VANETs, including routing, congestion control, autonomous driving, and security. In addition, this book provides a comprehensive analysis of these approaches' advantages and limitations and discusses their future research directions. The study in this book shows that DL-based techniques can significantly improve the performance and reliability of VANETs. Still, in-depth research is required to address the challenges of deploying these methods in real-world scenarios. Finally, the book discusses the potential of DL-based VANETs in supporting other emerging technologies, such as autonomous driving and smart cities. It explores the simulation/emulation tools for practical exposure to the vehicular ad hoc network.

Deep Learning Concepts in Operations Research (Advances in Computational Collective Intelligence)

by , Biswadip Basu MallikGunjan MukherjeeRahul KarAryan Chaudhary

The model-based approach for carrying out classification and identification of tasks has led to the pervading progress of the machine learning paradigm in diversified fields of technology. Deep Learning Concepts in Operations Research looks at the concepts that are the foundation of this model-based approach. Apart from the classification process, the machine learning (ML) model has become effective enough to predict future trends of any sort of phenomena. Such fields as object classification, speech recognition, and face detection have sought extensive application of artificial intelligence (AI) and ML as well. Among a variety of topics, the book examines: An overview of applications and computing devices Deep learning impacts in the field of AI Deep learning as state-of-the-art approach to AI Exploring deep learning architecture for cutting-edge AI solutions Operations research is the branch of mathematics for performing many operational tasks in other allied domains, and the book explains how the implementation of automated strategies in optimization and parameter selection can be carried out by AI and ML. Operations research has many beneficial aspects for decision making. Discussing how a proper decision depends on several factors, the book examines how AI and ML can be used to model equations and define constraints to solve problems and discover proper and valid solutions more easily. It also looks at how automation plays a significant role in minimizing human labor and thereby minimizes overall time and cost.

Deep Learning Cookbook: Practical Recipes to Get Started Quickly

by Douwe Osinga

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music.Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks.You’ll learn how to:Create applications that will serve real usersUse word embeddings to calculate text similarityBuild a movie recommender system based on Wikipedia linksLearn how AIs see the world by visualizing their internal stateBuild a model to suggest emojis for pieces of textReuse pretrained networks to build an inverse image search serviceCompare how GANs, autoencoders and LSTMs generate iconsDetect music styles and index song collections

Deep Learning Foundations

by Taeho Jo

This book provides a conceptual understanding of deep learning algorithms. The book consists of the four parts: foundations, deep machine learning, deep neural networks, and textual deep learning. The first part provides traditional supervised learning, traditional unsupervised learning, and ensemble learning, as the preparation for studying deep learning algorithms. The second part deals with modification of existing machine learning algorithms into deep learning algorithms. The book’s third part deals with deep neural networks, such as Multiple Perceptron, Recurrent Networks, Restricted Boltzmann Machine, and Convolutionary Neural Networks. The last part provides deep learning techniques that are specialized for text mining tasks. The book is relevant for researchers, academics, students, and professionals in machine learning.

Deep Learning Technologies for the Sustainable Development Goals: Issues and Solutions in the Post-COVID Era (Advanced Technologies and Societal Change)

by T. P. Singh Virender Kadyan Chidiebere Ugwu

This book provides insights into deep learning techniques that impact the implementation strategies toward achieving the Sustainable Development Goals (SDGs) laid down by the United Nations for its 2030 agenda, elaborating on the promises, limits, and the new challenges. It also covers the challenges, hurdles, and opportunities in various applications of deep learning for the SDGs. A comprehensive survey on the major applications and research, based on deep learning techniques focused on SDGs through speech and image processing, IoT, security, AR-VR, formal methods, and blockchain, is a feature of this book. In particular, there is a need to extend research into deep learning and its broader application to many sectors and to assess its impact on achieving the SDGs. The chapters in this book help in finding the use of deep learning across all sections of SDGs. The rapid development of deep learning needs to be supported by the organizational insight and oversight necessary for AI-based technologies in general; hence, this book presents and discusses the implications of how deep learning enables the delivery agenda for sustainable development.

Deep Learning Theory and Applications: 5th International Conference, DeLTA 2024, Dijon, France, July 10–11, 2024, Proceedings, Part I (Communications in Computer and Information Science #2171)

by Ana Fred Oleg Gusikhin Carlo Sansone Allel Hadjali

The two-volume set CCIS 2171 and 2172 constitutes the refereed best papers from the 5th International Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.

Deep Learning Theory and Applications: 5th International Conference, DeLTA 2024, Dijon, France, July 10–11, 2024, Proceedings, Part II (Communications in Computer and Information Science #2172)

by Ana Fred Oleg Gusikhin Carlo Sansone Allel Hadjali

The two-volume set CCIS 2171 and 2172 constitutes the refereed papers from the 5th INternational Conference on Deep Learning Theory and Applications, DeLTA 2024, which took place in Dijon, France, during July 10-11, 2024. The 44 papers included in these proceedings were carefully reviewed and selected from a total of 70 submissions. They focus on topics such as deep learning and big data analytics; machine-learning and artificial intelligence, etc.

Deep Learning Through the Prism of Tensors (Studies in Big Data #162)

by Balasubramanian Raman Pradeep Singh

In the rapidly evolving field of artificial intelligence, this book serves as a crucial resource for understanding the mathematical foundations of AI. It explores the intricate world of tensors, the fundamental elements powering today's advanced deep learning models. Combining theoretical depth with practical insights, the text navigates the complex landscape of tensor calculus, guiding readers to master the principles and applications of tensors in AI. From the basics of tensor algebra and geometry to the sophisticated architectures of neural networks, including multi-layer perceptrons, convolutional, recurrent, and transformer models, this book provides a comprehensive examination of the mechanisms driving modern AI innovations. It delves into the specifics of autoencoders, generative models, and geometric interpretations, offering a fresh perspective on the complex, high-dimensional spaces traversed by deep learning technologies. Concluding with a forward-looking view, the book addresses the latest advancements and speculates on the future directions of AI research, preparing readers to contribute to or navigate the next wave of innovations in the field. Designed for academics, researchers, and industry professionals, it serves as both an essential textbook for graduate and postgraduate students and a valuable reference for experts in the field. With its rigorous approach to the mathematical frameworks of AI and a strong focus on practical applications, this book bridges the gap between theoretical research and real-world implementation, making it an indispensable guide in the realm of artificial intelligence.

Deep Learning and Computational Physics

by Deep Ray Orazio Pinti Assad A. Oberai

The main objective of this book is to introduce a student who is familiar with elementary math concepts to select topics in deep learning. It exploits strong connections between deep learning algorithms and the techniques of computational physics to achieve two important goals. First, it uses concepts from computational physics to develop an understanding of deep learning algorithms. Second, it describes several novel deep learning algorithms for solving challenging problems in computational physics, thereby offering someone who is interested in modeling physical phenomena with a complementary set of tools. It is intended for senior undergraduate and graduate students in science and engineering programs. It is used as a textbook for a course (or a course sequence) for senior-level undergraduate or graduate-level students.

Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics (Advances in Computer Vision and Pattern Recognition)

by Gustavo Carneiro Le Lu Lin Yang Xiaosong Wang

This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases. It particularly focuses on the application of convolutional neural networks, and on recurrent neural networks like LSTM, using numerous practical examples to complement the theory. The book’s chief features are as follows: It highlights how deep neural networks can be used to address new questions and protocols, and to tackle current challenges in medical image computing; presents a comprehensive review of the latest research and literature; and describes a range of different methods that employ deep learning for object or landmark detection tasks in 2D and 3D medical imaging. In addition, the book examines a broad selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to text and image deep embedding for a large-scale chest x-ray image database; and discusses how deep learning relational graphs can be used to organize a sizable collection of radiology findings from real clinical practice, allowing semantic similarity-based retrieval.The intended reader of this edited book is a professional engineer, scientist or a graduate student who is able to comprehend general concepts of image processing, computer vision and medical image analysis. They can apply computer science and mathematical principles into problem solving practices. It may be necessary to have a certain level of familiarity with a number of more advanced subjects: image formation and enhancement, image understanding, visual recognition in medical applications, statistical learning, deep neural networks, structured prediction and image segmentation.

Refine Search

Showing 7,201 through 7,225 of 28,518 results