- Table View
- List View
Die fabelhafte Welt der Mathematik: Von fallenden Katzen über optimales Einparken bis zu Zeitreisen
by Manon BischoffEin Kampf gegen die US-amerikanische Geheimdienstbehörde NSA, eine Krankenschwester, die zu Unrecht ins Gefängnis musste, und ein mysteriöses Duell um eine Frau, das mit dem tragischen Tod eines 20-Jährigen endet: Das sind keine erfundenen Geschichten aus einem Spionage-Thriller, sondern wahre Geschehnisse, die sich rund um die Erforschung von Mathematikereignet haben. Denn Mathematik muss nicht abstrakt, kompliziert oder öde sein, wie manche Leute annehmen.Tatsächlich lauert hinter der zurückhaltenden Fassade des Fachs eine faszinierende Welt voller Überraschungen. Begeben Sie sich mit Manon Bischoff auf eine Reise durch die verschiedenen mathematischen Landschaften und lernen Sie, wie man eine Praline auf magische Weise verdoppelt; was die langweiligste Zahl der Welt ist oder warum Katzen einen Sturz aus jeder Höhe überleben können.Stimme zum Buch„Die meisten Menschen wissen noch nicht, dass sie sich fürMathematik interessieren. Das Buch von Manon Bischoff kann diese Wissenslücke hervorragend schließen.“Florian Freistetter
Die faszinierende Welt der Wahrscheinlichkeitsrechnung: Stochastik in Aktion
by Henk C. TijmsDieses Lehrbuch deckt die wichtigsten Konzepte und Formeln der Wahrscheinlichkeitsrechnung ab und möchte für deren Schönheit begeistern. Es stellt Einsicht und Verständnis an erste Stelle – zu diesem Zweck werden zahlreiche motivierende und lehrreiche Beispiele und Aufgaben bereitgestellt. Das Buch richtet sich an alle, die mehr darüber wissen wollen, was Wahrscheinlichkeit ist und wie sie angewendet wird – etwa Studierende in Studiengängen wie Informatik, Natur-, Ingenieur-, Wirtschafts- und Sozialwissenschaften oder Lehrkräfte für Mathematik. Es unterscheidet sich von anderen Einführungen in die Wahrscheinlichkeitstheorie, indem es auch der Bayesschen Statistik und dem Zusammenspiel von Monte-Carlo-Simulation und Wahrscheinlichkeitsrechnung gebührende Aufmerksamkeit widmet. Außerdem enthält es einige reale Anwendungsfälle aus dem täglichen Leben, die von der Anwendung des Bayesschen Denkens in Recht und Medizin bis hin zu Anlagestrategien an der Börse, Elfmeterschießen im Fußball und Täuschungen bei Lotterien reichen. Das vorliegende Buch basiert maßgeblich auf dem niederländischen Buch Kansrekening in Werking – een moderne aanpak (4. Aufl. 2023, Verlag Epsilon Uitgaven) des Autors, das von diesem um weitere Inhalte angereichert wurde. Die Übersetzung wurde auf Basis künstlicher Intelligenz erstellt und vom Autor auf Richtigkeit geprüft und überarbeitet. In stilistischer Hinsicht kann sie sich dennoch von einer herkömmlichen Übersetzung unterscheiden. Die Produktfamilie WissensExpress bietet Ihnen Lehr- und Lernbücher in kompakter Form. Die Bücher liefern schnell und verständlich fundiertes Wissen.
Die gedrosselte Beziehung: Eine empirische Studie zur Bedeutung von Nähe und Distanz in der Heimerziehung (Forschungsreihe der FH Münster)
by Luisa Friedrichs Annalena WalugaDiese Grounded Theory dient der Gewinnung empirischer Erkenntnisse zur Bedeutung von Nähe und Distanz für die Beziehungsgestaltung in der stationären Kinder- und Jugendhilfe. Um eine professionelle Beziehung in einem familienersetzenden Setting adäquat gestalten zu können, braucht es systematisches Wissen über das, was Fachkräfte denken, tun, erleben und bewerten. Beziehung findet unter professionellem Einsatz von Nähe und Distanz immer gedrosselt statt. Verliert Beziehung ihren gedrosselten Charakter, weicht auch professionelle Handlungsfähigkeit und Legitimation. Die gedrosselte Beziehung versteht sich als Rahmen, an dem sich Fachkräfte im Spannungsfeld orientieren können. Sie bietet einen Ansatzpunkt für weitere Forschungen zur Nähe-Distanz-Antinomie.
Die geheime Macht der Zahlen: Mathematik hinter Aschewolken, Verkehrsplanung, Steuerbetrug und Golfbällen
by Dietmar KrönerDieses Buch zeigt die Schönheit, Möglichkeiten und Wirkungsmacht der Mathematik mit besonderem Fokus auf der Angewandten Mathematik. Die Simulation der Ausbreitung von Flugasche, des Abschmelzens von Gletschern, der Verkehrsplanung, von Überschwemmungen und Tsunamis, Crashtests, der Wettervorhersage, des Designs von Golfbällen und Segelbooten sind Herausforderungen für die Mathematik. In diesem Buch werden jeweils die Fragestellung des Problems und die Ergebnisse, sowie die persönlichen Erfahrungen, die der Autor bei der Bearbeitung einiger solcher Probleme gemacht hat, dargestellt. Während zur Bearbeitung dieser Probleme Höchstleistungscomputer notwendig sind, geht es im zweiten Teil des Buches um Probleme, die man auch mit Papier und Bleistift lösen kann. Interessante Begebenheiten aus dem Mathematischen Forschungsinstitut Oberwolfach sind Gegenstand eines weiteren Kapitels. Das Buch richtet sich an Leser ohne mathematisches Hintergrundwissen. Formeln werden weitgehend vermieden und kommen nur im Anhang vor.
Die individuelle mathematische Kreativität von Schulkindern: Theoretische Grundlegung und empirische Befunde zur Kreativität von Erstklässler*innen (Bielefelder Schriften zur Didaktik der Mathematik #8)
by Svenja BruhnIn dieser Open-Access-Publikation wird zunächst die individuelle mathematische Kreativität von Schulkindern (InMaKreS) konkret definiert und darauf aufbauend das InMaKreS-Modell entwickelt, welches bedeutsame Implikationen für das Beobachten und Anregen kreativen Verhaltens in mathematischen Lehr-Lern-Situationen aufzeigt. In einer Mixed Methods-Studie werden daraufhin vier Kreativitätstypen herausgearbeitet, welche die Spannweite kreativer Fähigkeiten von Erstklässler*innen bei der Bearbeitung arithmetisch offener Aufgaben abbilden. Zudem werden Besonderheiten der kreativen Umgebung wie die Auswahl geeigneter offener Aufgaben oder Unterstützungsmöglichkeiten von Lehrkräften durch den Einsatz (meta-)kognitiver Prompts analysiert und vor dem Hintergrund einer heterogenen Schülerschaft diskutiert.
Die schönste Gleichung aller Zeiten: Von mathematischen Grundkenntnissen zur eulerschen Identität
by Katja Krüger Hans-Dieter RinkensIn diesem Buch geht es um die fünf wichtigsten Zahlen: Außer 0 und 1 gibt es kaum noch wichtigere Zahlen als π, i und e.Die Kreiszahl π ist nicht nur eine Sache der Geometrie: Bekanntes wird aufgefrischt und Erstaunliches hinzugelernt. Die imaginäre Einheit i befreit uns von der Rechenstörung, aus negativen Zahlen nicht die Wurzel ziehen zu dürfen oder zu können. Die Euler-Zahl e liegt fast allen Wachstums- und Zerfallsprozessen zugrunde: Die e-Funktion ist wohl die wichtigste mathematische Funktion überhaupt. In dem Lehrbuch geht es um eine bemerkenswerte Beziehung zwischen den fünf Zahlen, die Eulersche Gleichung, "die schönste Formel der Mathematik", wie viele Mathematiker finden. Es soll den Weg zum Verständnis der geheimnisvollen Formel beschreiben. Dieser Weg führt durch zentrale Gebiete der Mathematik: Geometrie einschließlich Trigonometrie, Arithmetik und Algebra sowie Analysis mit einem Blick in wissenschaftliches Rechnen. Nicht die Systematik dieser Gebiete steht im Vordergrund, sondern die fundamentalen Ideen, die zum Entstehen der Formel beitragen.
Diesseits und jenseits: Mathematik und Phänomenologie der Grenze
by Mario H. KrausDieses Buch behandelt Grenzen als allgegenwärtige Erscheinungen verschiedener Lebenswelten. Grenzen markieren stets Zweiseitigkeit: Es gibt genau zwei Seiten, auf beiden ist oder geschieht jeweils etwas anderes, aber niemals Nichts. Der Autor arbeitet anhand verschiedenster Beispiele wesentliche Gemeinsamkeiten und Unterschiede verschiedener Grenzbegriffe in räumlichen, zeitlichen und gesellschaftlichen Kontexten heraus. Er entwirft einen fachübergreifenden Grenzbegriff, der Ausgangspunkt für eine Limologie, eine Lehre von den Grenzen, sein kann. Die Mathematik hilft dabei, zugrundeliegende Gesetzmäßigkeiten zu verstehen; die Phänomenologie vermittelt zwischen Theorie und Praxis. Das Buch bietet somit wertvolle Impulse für fachübergreifend Interessierte u.a. mit Hintergründen in Mathematik, Physik, Geographie, Architektur, Soziologie, Psychologie oder Philosophie.
Diffeomorphisms of Elliptic 3-Manifolds
by Darryl Mccullough J. Hyam Rubinstein John Kalliongis Sungbok HongThis work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
Difference Equations and Discrete Dynamical Systems with Applications: 24th ICDEA, Dresden, Germany, May 21–25, 2018 (Springer Proceedings in Mathematics & Statistics #312)
by Martin Bohner Stefan Siegmund Roman Šimon Hilscher Petr StehlíkThis book presents the proceedings of the 24th International Conference on Difference Equations and Applications, which was held at the Technical University in Dresden, Germany, in May 2018, under the auspices of the International Society of Difference Equations (ISDE). The conference brought together leading researchers working in the respective fields to discuss the latest developments, and to promote international cooperation on the theory and applications of difference equations. This book appeals to researchers and scientists working in the fields of difference equations and discrete dynamical systems and their applications.
Difference Equations and Inequalities: Theory, Methods, and Applications
by Ravi P. AgarwalA study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
Difference Equations by Differential Equation Methods
by Peter E. HydonMost well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.
Difference Equations with Applications to Queues (Chapman And Hall/crc Pure And Applied Mathematics Ser. #Vol. 233)
by David L. Jagerman"Presents a theory of difference and functional equations with continuous argument based on a generalization of the Riemann integral introduced by N.E. Norlund, allowing differentation with respect to the independent variable and permitting greater flexibility in constructing solutions and approximations. Discusses linear transformations that state conditions for convergence of Newton series and Norlund sums!"
Difference Equations with Public Health Applications (Chapman & Hall/CRC Biostatistics Series)
by Asha Seth Kapadia Lemuel A. MoyéThis study of difference equations with public health applications develops the methodology for the solution of the general kth order linear difference equation using the generating function approach. It includes an examination of the dynamics of disease spread and containment in populations using illness-death models. There are over 1000 featured
Difference Equations, Discrete Dynamical Systems and Applications
by Alberto A. Pinto Jim M. Cushing Saber Elaydi Lluís Alsedà i SolerThese proceedings of the 18th International Conference on Difference Equations and Applications cover a number of different aspects of difference equations and discrete dynamical systems, as well as the interplay between difference equations and dynamical systems. The conference was organized by the Department of Mathematics at the Universitat Aut#65533;noma de Barcelona (UAB) under the auspices of the International Society of Difference Equations (ISDE) and held in Barcelona (Catalonia, Spain) in July 2012. Its purpose was to bring together experts and novices in these fields to discuss the latest developments. The book gathers contributions in the field of combinatorial and topological dynamics, complex dynamics, applications of difference equations to biology, chaotic linear dynamics, economic dynamics and control and asymptotic behavior, and periodicity of difference equations. As such it is of interest to researchers and scientists engaged in the theory and applications of difference equations and discrete dynamical systems.
Difference Equations, Discrete Dynamical Systems and Applications
by Martin Bohner Yiming Ding Ondřej DošlýThese proceedings of the 20th International Conference on Difference Equations and Applications cover the areas of difference equations, discrete dynamical systems, fractal geometry, difference equations and biomedical models, and discrete models in the natural sciences, social sciences and engineering. The conference was held at the Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (Hubei, China), under the auspices of the International Society of Difference Equations (ISDE) in July 2014. Its purpose was to bring together renowned researchers working actively in the respective fields, to discuss the latest developments, and to promote international cooperation on the theory and applications of difference equations. This book will appeal to researchers and scientists working in the fields of difference equations, discrete dynamical systems and their applications.
Difference Equations, Discrete Dynamical Systems and Applications: ICDEA 23, Timişoara, Romania, July 24-28, 2017 (Springer Proceedings in Mathematics & Statistics #287)
by Christian Pötzsche Saber Elaydi Adina Luminiţa SasuThe book presents the proceedings of the 23rd International Conference on Difference Equations and Applications, ICDEA 2017, held at the West University of Timișoara, Romania, under the auspices of the International Society of Difference Equations (ISDE), July 24 - 28, 2017. It includes new and significant contributions in the field of difference equations, discrete dynamical systems and their applications in various sciences. Disseminating recent studies and related results and promoting advances, the book appeals to PhD students, researchers, educators and practitioners in the field.
Difference Equations, Discrete Dynamical Systems and Applications: IDCEA 2022, Gif-sur-Yvette, France, June 18–22 (Springer Proceedings in Mathematics & Statistics #444)
by Sorin Olaru Saber Elaydi René Lozi Jim CushingThis book presents contributions related to new research results presented at the 27th International Conference on Difference Equations and Applications, ICDEA 2022, that was held at CentraleSupélec, Université Paris-Saclay, France, under the auspices of the International Society of Difference Equations (ISDE), July 18–22, 2022. The book aims not only to disseminate these results but to foster further advances in the fields of difference equations and discrete dynamical systems. Also included are applications to economic growth modeling, population dynamics, epidemic modeling, game theory, control systems, and network analysis. The target audience for the book includes Ph.D. students, researchers, educators, and practitioners in these fields.
Difference Equations, Second Edition
by Ronald E. MickensIn recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models.The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations.Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.
Difference Equations: Theory, Applications and Advanced Topics, Third Edition (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)
by Ronald E. MickensDifference Equations: Theory, Applications and Advanced Topics, Third Edition provides a broad introduction to the mathematics of difference equations and some of their applications. Many worked examples illustrate how to calculate both exact and approximate solutions to special classes of difference equations. Along with adding several advanced to
Difference Methods for Singular Perturbation Problems (Monographs and Surveys in Pure and Applied Mathematics)
by Grigory I. Shishkin Lidia P. Shishkina� Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods.The first part of the book e
Difference and Differential Equations with Applications in Queueing Theory
by Aliakbar Montazer Haghighi Dimitar P. MishevA Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing ModelsDifference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of topics that are used in stochastic processes, particularly in queueing theory, the book thoroughly discusses the relationship to systems of linear differential difference equations.The book demonstrates the applicability that queueing theory has in a variety of fields including telecommunications, traffic engineering, computing, and the design of factories, shops, offices, and hospitals. Along with the needed prerequisite fundamentals in probability, statistics, and Laplace transform, Difference and Differential Equations with Applications in Queueing Theory provides:A discussion on splitting, delayed-service, and delayed feedback for single-server, multiple-server, parallel, and series queue modelsApplications in queue models whose solutions require differential difference equations and generating function methodsExercises at the end of each chapter along with select answersThe book is an excellent resource for researchers and practitioners in applied mathematics, operations research, engineering, and industrial engineering, as well as a useful text for upper-undergraduate and graduate-level courses in applied mathematics, differential and difference equations, queueing theory, probability, and stochastic processes.
Different Perspectives in Design Thinking
by Yvonne ErikssonGlobalization and digitalization are buzz words in contemporary society. They affect both our private and our professional lives. Society has become more diverse with easier access to information and to virtual platforms that gives us opportunity to be in touch with colleagues, friends, family, etc. at any time. A complex environment is emerging wherein internet of things and big data are being integrated with products, production systems, healthcare, and daily activity and play an important part in decision making. This has an impact on future designs and the role of designers. Responsible designers with a holistic perspective are needed.The book highlights several aspects of design thinking such as Information Design and Critical Design. The meaning of culture, gender and disabilities are also discussed. The functions of Information Design are changing from ‘showing the way’, instruction manuals and graphic design. It will affect among others, healthcare technology, smart products and Industry 4.0. Design thinking perspective that includes users from the entire chain and from the producer to the end user of the product or service, is needed. This will also require gender and culture issues to be taken into consideration in designing products and services. Design thinking methods and critical aspects of design will contribute to an inclusive society.
Differentiability in Banach Spaces, Differential Forms and Applications
by Celso Melchiades DoriaThis book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.
Differentiable Manifolds
by Gerardo F. Torres del CastilloThis textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.
Differentiable Manifolds: A Theoretical Physics Approach
by Gerardo F. Torres del CastilloThis textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.