- Table View
- List View
Analysis and Design of Singular Markovian Jump Systems
by Guoliang Wang Qingling Zhang Xinggang YanThis monograph is an up-to-date presentation of the analysis and design of singular Markovian jump systems (SMJSs) in which the transition rate matrix of the underlying systems is generally uncertain, partially unknown and designed. The problems addressed include stability, stabilization, H∞ control and filtering, observer design, and adaptive control. applications of Markov process are investigated by using Lyapunov theory, linear matrix inequalities (LMIs), S-procedure and the stochastic Barbalat's Lemma, among other techniques. Features of the book include: · study of the stability problem for SMJSs with general transition rate matrices (TRMs); · stabilization for SMJSs by TRM design, noise control, proportional-derivative and partially mode-dependent control, in terms of LMIs with and without equation constraints; · mode-dependent and mode-independent H∞ control solutions with development of a type of disordered controller; · observer-based controllers of SMJSs in which both the designed observer and controller are either mode-dependent or mode-independent; · consideration of robust H∞ filtering in terms of uncertain TRM or filter parameters leading to a method for totally mode-independent filtering · development of LMI-based conditions for a class of adaptive state feedback controllers with almost-certainly-bounded estimated error and almost-certainly-asymptotically-stable corres ponding closed-loop system states · applications of Markov process on singular systems with norm bounded uncertainties and time-varying delays Analysis and Design of Singular Markovian Jump Systems contains valuable reference material for academic researchers wishing to explore the area. The contents are also suitable for a one-semester graduate course.
Analysis and Design of Steel and Composite Structures
by Qing Quan LiangSteel and composite steel–concrete structures are widely used in modern bridges, buildings, sport stadia, towers, and offshore structures. Analysis and Design of Steel and Composite Structures offers a comprehensive introduction to the analysis and design of both steel and composite structures. It describes the fundamental behavior of steel and composite members and structures, as well as the current design criteria and procedures given in Australian standards AS/NZS 1170, AS 4100, AS 2327.1, Eurocode 4, and AISC-LRFD specifications.Featuring numerous step-by-step examples that clearly illustrate the detailed analysis and design of steel and composite members and connections, this practical and easy-to-understand text: Covers plates, members, connections, beams, frames, slabs, columns, and beam-columns Considers bending, axial load, compression, tension, and design for strength and serviceability Incorporates the author’s latest research on composite members Analysis and Design of Steel and Composite Structures is an essential course textbook on steel and composite structures for undergraduate and graduate students of structural and civil engineering, and an indispensable resource for practising structural and civil engineers and academic researchers. It provides a sound understanding of the behavior of structural members and systems.
Analysis and Design of Steel and Composite Structures
by Qing Quan LiangSteel and composite steel–concrete structures are widely used in modern bridges, buildings, sport stadia, towers, and offshore structures. Analysis and Design of Steel and Composite Structures offers a comprehensive introduction to the analysis and design of both steel and composite structures. It describes the fundamental behavior of steel and composite members and structures, as well as the current design criteria and procedures given in Australian standards AS/NZS 1170, AS 4100, AS 2327.1, Eurocode 4, and AISC-LRFD specifications.Featuring numerous step-by-step examples that clearly illustrate the detailed analysis and design of steel and composite members and connections, this practical and easy-to-understand text: Covers plates, members, connections, beams, frames, slabs, columns, and beam-columns Considers bending, axial load, compression, tension, and design for strength and serviceability Incorporates the author’s latest research on composite members Analysis and Design of Steel and Composite Structures is an essential course textbook on steel and composite structures for undergraduate and graduate students of structural and civil engineering, and an indispensable resource for practising structural and civil engineers and academic researchers. It provides a sound understanding of the behavior of structural members and systems.
Analysis and Design of the Power-Split Device for Hybrid Systems
by Xiaohua Zeng Jixin WangThis book presents a comprehensive overview of power-split device (PSD) design. It discusses vehicle energy consumption characteristics, hybrid vehicle power request solutions, typical configurations, operating principle and simulation technology of PSD hybrid system, a multi-factor integrated parametric design method and a dynamic coordinated control method for PSD hybrid system. It also describes the finite element analysis, thermal analysis and optimization of the PSD based on a surrogate model, explains the theory behind the design and the simulation, and provides concrete examples. It is a valuable resource for researchers and the engineers to gain a better understanding of the PSD design process.
Analysis and Design of Transimpedance Amplifiers for Optical Receivers
by Eduard SäckingerAn up-to-date, comprehensive guide for advanced electrical engineering studentsand electrical engineers working in the IC and optical industries This book covers the major transimpedance amplifier (TIA) topologies and their circuit implementations for optical receivers. This includes the shunt-feedback TIA, common-base TIA, common-gate TIA, regulated-cascode TIA, distributed-amplifier TIA, nonresistive feedback TIA, current-mode TIA, burst-mode TIA, and analog-receiver TIA. The noise, transimpedance, and other performance parameters of these circuits are analyzed and optimized. Topics of interest include post amplifiers, differential vs. single-ended TIAs, DC input current control, and adaptive transimpedance. The book features real-world examples of TIA circuits for a variety of receivers (direct detection, coherent, burst-mode, etc.) implemented in a broad array of technologies (HBT, BiCMOS, CMOS, etc.). The book begins with an introduction to optical communication systems, signals, and standards. It then moves on to discussions of optical fiber and photodetectors. This discussion includes p-i-n photodetectors; avalanche photodetectors (APD); optically preamplified detectors; integrated detectors, including detectors for silicon photonics; and detectors for phase-modulated signals, including coherent detectors. This is followed by coverage of the optical receiver at the system level: the relationship between noise, sensitivity, optical signal-to-noise ratio (OSNR), and bit-error rate (BER) is explained; receiver impairments, such as intersymbol interference (ISI), are covered. In addition, the author presents TIA specifications and illustrates them with example values from recent product data sheets. The book also includes: Many numerical examples throughout that help make the material more concrete for readers Real-world product examples that show the performance of actual IC designs Chapter summaries that highlight the key points Problems and their solutions for readers who want to practice and deepen their understanding of the material Appendices that cover communication signals, eye diagrams, timing jitter, nonlinearity, adaptive equalizers, decision point control, forward error correction (FEC), and second-order low-pass transfer functions Analysis and Design of Transimpedance Amplifiers for Optical Receivers belongs on the reference shelves of every electrical engineer working in the IC and optical industries. It also can serve as a textbook for upper-level undergraduates and graduate students studying integrated circuit design and optical communication.
Analysis and Design Optimization of Micromixers (SpringerBriefs in Applied Sciences and Technology)
by Arshad Afzal Kwang-Yong KimThis book illustrates the computational framework based on knowledge of flow and mass transfer together with optimization techniques to solve problems relevant to micromixing technology. The authors provide a detailed analysis of the different numerical techniques applied to the design of micromixers. Flow and mixing analysis is based on both the Eulerian and Lagrangian approaches; relative advantages and disadvantages of the two methods and suitability to different types of mixing problems are analysed. The book also discusses the various facets of numerical schemes subjected to discretization errors and computational grid requirements. Since a large number of studies are based on commercial computational fluid dynamics (CFD) packages, relevant details of these packages to the mixing problem using them are presented. Numerical optimization techniques coupled with CFD analysis of flow and mixing have proved to be an important tool for micromixers design, and therefore, are an important part of the book. These techniques are presented briefly, and focus is on surrogate modeling and optimization applied to design of micromixers.
Analysis and Development of Sustainable Urban Production Systems (Sustainable Production, Life Cycle Engineering and Management)
by Max JuraschekManufacturing of products in urban production sites is connected to unique potentials, yet also to specific challenges. Urban factories can provide functional diversity and contribute positive impacts to a city. The concept of urban production receives rising attention in research and industry and it is recognized in its interdisciplinary nature. With a holistic approach from both the urban perspective and the factory perspective, negative impacts can be minimized, positive effects enabled and mutually beneficial, symbiotic combinations created. The presented framework and methods for the evaluation and implementation of sustainable urban production systems allow the assessment of impacts and provide the means to control and utilize the unique strengths of urban factories for cities and industry. This will allow a structured derivation of methods and measures from the concept of urban production for producing enterprises and the urban stakeholders.
Analysis and Enumeration: Algorithms for Biological Graphs (Atlantis Studies in Computing #6)
by Andrea MarinoIn this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i. e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions, that can be solved by using a non trivial brute-force approach. Given a metabolic network, each individual story should explain how some interesting metabolites are derived from some others through a chain of reactions, by keeping all alternative pathways between sources and targets. Enumerating cycles or paths in an undirected graph, such as a protein-protein interaction undirected network, is an example of an enumeration problem in which all the solutions can be listed through an optimal algorithm, i. e. the time required to list all the solutions is dominated by the time to read the graph plus the time required to print all of them. By extending this result to directed graphs, it would be possible to deal more efficiently with feedback loops and signed paths analysis in signed or interaction directed graphs, such as gene regulatory networks. Finally, enumerating mouths or bubbles with a source s in a directed graph, that is enumerating all the two vertex-disjoint directed paths between the source s and all the possible targets, is an example of an enumeration problem in which all the solutions can be listed through a linear delay algorithm, meaning that the delay between any two consecutive solutions is linear, by turning the problem into a constrained cycle enumeration problem. Such patterns, in a de Bruijn graph representation of the reads obtained by sequencing, are related to polymorphisms in DNA- or RNA-seq data.
Analysis and Evaluation of Public Social Housing: Tools for a Sustainable Regeneration (SpringerBriefs in Applied Sciences and Technology)
by Lorenzo DianaThe book explores current characteristics of the urban built environment in view of possible future transformations. A cross-reading analysis of existing public social housing buildings is proposed, based on the investigation of their architectural, structural, and energetic characteristics. The study aims to provide an integrated approach that captures the link between typology, construction, and energy demands, offering a key to understanding the main critical issues and transformation readiness. It focuses on large-scale interventions composing public social housing stocks, realized during the second half of the twentieth century. More than other public interventions, such building stocks clearly lack in meeting current housing needs such as modern apartment architectural layout, energy and structural regulations, and social mix. However, due to their numerical presence, strategical and widespread distribution across urban areas, and transformability, these buildings can be the target for future strategic regeneration projects. In particular, the book thoroughly investigates the social housing estate constructed in Rome (Italy) after the approval in 1964 of the first urban economic and social housing plan.
Analysis and Geometry: MIMS-GGTM, Tunis, Tunisia, March 2014. In Honour of Mohammed Salah Baouendi (Springer Proceedings in Mathematics & Statistics #127)
by Ali Baklouti Aziz El Kacimi Sadok Kallel Nordine MirThis book includes selected papers presented at the MIMS (Mediterranean Institute for the Mathematical Sciences) - GGTM (Geometry and Topology Grouping for the Maghreb) conference, held in memory of Mohammed Salah Baouendi, a most renowned figure in the field of several complex variables, who passed away in 2011. All research articles were written by leading experts, some of whom are prize winners in the fields of complex geometry, algebraic geometry and analysis. The book offers a valuable resource for all researchers interested in recent developments in analysis and geometry.
The Analysis and Geometry of Hardy's Inequality
by Alexander A. Balinsky W. Desmond Evans Roger T. LewisThis volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz'ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy's Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.
Analysis and Geometry of Markov Diffusion Operators (Grundlehren der mathematischen Wissenschaften #348)
by Dominique Bakry Ivan Gentil Michel LedouxThe present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
Analysis and Geometry on Graphs and Manifolds (London Mathematical Society Lecture Note Series #461)
by Matthias Keller Daniel Lenz Radoslaw K. WojciechowskiThe interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions: Theory and Algorithms with MATLAB® (Studies in Systems, Decision and Control #46)
by Anish Deb Srimanti Roychoudhury Gautam SarkarThis book introduces a newset of orthogonal hybrid functions (HF) which approximates time functions in apiecewise linear manner which is very suitable for practical applications. The book presents ananalysis of different systems namely, time-invariant system, time-varyingsystem, multi-delay systems---both homogeneous and non-homogeneous type- andthe solutions are obtained in the form of discrete samples. The book alsoinvestigates system identification problems for many of the above systems. Thebook is spread over 15 chapters and contains 180 black and white figures, 18colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many suchexamples are included at the end of the book.
Analysis and Implementation of Isogeometric Boundary Elements for Electromagnetism (Springer Theses)
by Felix WolfThis book presents a comprehensive mathematical and computational approach for solving electromagnetic problems of practical relevance, such as electromagnetic scattering and the cavity problems. After an in-depth introduction to the mathematical foundations of isogeometric analysis, which discusses how to conduct higher-order simulations efficiently and without the introduction of geometrical errors, the book proves quasi-optimal approximation properties for all trace spaces of the de Rham sequence, and demonstrates inf-sup stability of the isogeometric discretisation of the electric field integral equation (EFIE). Theoretical properties and algorithms are described in detail. The algorithmic approach is, in turn, validated through a series of numerical experiments aimed at solving a set of electromagnetic scattering problems. In the last part of the book, the boundary element method is combined with a novel eigenvalue solver, a so-called contour integral method. An algorithm is presented, together with a set of successful numerical experiments, showing that the eigenvalue solver benefits from the high orders of convergence offered by the boundary element approach. Last, the resulting software, called BEMBEL (Boundary Element Method Based Engineering Library), is reviewed: the user interface is presented, while the underlying design considerations are explained in detail. Given its scope, this book bridges an important gap between numerical analysis and engineering design of electromagnetic devices.
Analysis and Integration of Behavioral Units (Psychology Library Editions: Cognitive Science #25)
by TRAVIS THOMPSON AND MICHAEL D. ZEILEROriginally published in 1986, this volume was the result of a conference in honor of the 65th birthday of the late Kenneth MacCorquodale, an exceptionally eloquent spokesman for the field of experimental analysis of behaviour at the time. The present volume grew directly out of the issues raised by MacCorquodale and Meehl in their "Excursis: The Response Concept" paper and which MacCorquodale posed so often when he taught. It is a fitting tribute to the man on his 65th birthday that a group of scholars whom he held in the highest regard convened in one place to think out loud about two of the thorniest problems facing behavioral science, namely, the nature of the units of analysis of the subject matter and the mechanisms responsible for their integration.
Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos (The Western Ontario Series in Philosophy of Science #78)
by Robert Disalle Melanie Frappier Derek BrownThe essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of particular sciences. A fruitful approach to these problems combines the study of scientific detail with the kind of conceptual analysis that is characteristic of the modern analytic tradition. Such an approach is shared by these contributors: some primarily known as analytic philosophers, some as philosophers of science, but all deeply aware that the problems of analysis and interpretation link these fields together.
Analysis and Interpretation of Fire Scene Evidence
by José R. Almirall Kenneth G. FurtonOngoing advances in arson detection tools and techniques increase the importance of scientific evidence in related court proceedings. In order to assemble an airtight case, investigators and forensic scientists need a resource that assists them in properly conducting the chemical analysis and interpretation of physical evidence found at scenes of s
Analysis and Management of Productivity and Efficiency in Production Systems for Goods and Services
by Fabio Sartori Piran Daniel Pacheco Lacerda Luis Felipe CamargoIn companies that produce goods and services, productivity and efficiency improvements are a constant challenge. This book reviews the differences between productivity and efficiency. It proposes a new method and makes available a computational tool for implementation that contributes to facilitating the use of Data Envelopment Analysis (DEA). The book presents a discussion about productivity and efficiency, illustrating the potentials of use and conceptual differences. It covers the concepts and techniques for analysis of productivity and efficiency, analyzing critical benefits and limitations, explains in detail how to use DEA for analysis, provides innovative methods for using DEA, offers a free online computer tool with a direction guide, shows real empirical applications, and covers other techniques that can be used to complement the analysis performed. The book is for professionals, managers, consultants, students working and taking courses in productive systems of goods and services. Ancillary materials include a free online computer tool to operationalize the concepts and methods proposed in the book, a guide on how to use the method and the software developed for the DEA application. Solutions manual, instructor’s manual, PowerPoint slides, and figure slides also will be available upon qualified adoption.
Analysis and Mathematical Models of Canned Electrical Machine Drives: In Particular a Canned Switched Reluctance Machine
by Qiang Yu Xuesong Wang Yuhu Cheng Lisi TianThis book focuses on the electromagnetic and thermal modeling and analysis of electrical machines, especially canned electrical machines for hydraulic pump applications. It addresses both the principles and engineering practice, with more weight placed on mathematical modeling and theoretical analysis. This is achieved by providing in-depth studies on a number of major topics such as: can shield effect analysis, machine geometry optimization, control analysis, thermal and electromagnetic network models, magneto motive force modeling, and spatial magnetic field modeling. For the can shield effect analysis, several cases are studied in detail, including classical canned induction machines, as well as state-of-the-art canned permanent magnet machines and switched reluctance machines. The comprehensive and systematic treatment of the can effect for canned electrical machines is one of the major features of this book, which is particularly suited for readers who are interested in learning about electrical machines, especially for hydraulic pumping, deep-sea exploration, mining and the nuclear power industry. The book offers a valuable resource for researchers, engineers, and graduate students in the fields of electrical machines, magnetic and thermal engineering, etc.
Analysis and Mitigation of Broadband Oscillation in Renewable Energy Generation and AC/DC Transmission Systems
by Weisheng Wang Guanghui Li Guoqing HeWith the growth of the installed capacity and the proportion of REG, mainly including wind power and PV power generation, the stable operation of REG and AC/DC transmission systems has become a technical bottleneck for the sustainable development of REG. Since 2009, broadband oscillation incidents have occurred frequently in REG and AC/DC transmission systems in China and some foreign countries, resulting in severe consequences such as large-scale tripping-off of REG units, damaging equipments, and an increasing curtailment of wind and PV power generation. However, there are great difficulties and challenges for the analysis and mitigation of broadband oscillation.This book focuses on the analysis and mitigation of broadband oscillation in renewable energy generation and AC/DC transmission systems. The theoretical knowledge and practical approaches to solve this issue are explored through the contents of 4 parts, 18 chapters. Part Ⅰ is Small-signal Modeling of Converters, containing four chapters. The frequency-domain small-signal modeling method and impedance modeling of three types of basic converters commonly used in power electronic devices, including the two-level converter, modular multilevel converter, and thyristor converter are introduced. Part Ⅱ is Impedance Model and Characteristics Analysis of REG and HVDC Transmission, containing six chapters. The impedance model and characteristics analysis of the full power conversion wind turbine, DFIG-based wind turbines, PV unit, SVG, LCC-HVDC, and MMC-HVDC are introduced. Part Ⅲ is Broadband Oscillation Analysis in REG and AC/DC Transmission Systems, containing three chapters. The impedance modeling and characteristics analysis of REG plants, and oscillation analysis of REG connected into AC and HVDC transmission systems are introduced. Part Ⅳ is Broadband Oscillation Mitigation in REG and AC/DC Transmission Systems, containing five chapters. The impedance reshaping of the REG unit, SVG, LCC-HVDC, and MMC-HVDC as well as project cases are presented.This book can be used by the researchers engaged in the design, technology research and development, and operation management of electrical engineering and renewable energy engineering, which can also be a reference book for teachers and students of electrical engineering in colleges and universities.
Analysis and Modeling of Complex Data in Behavioral and Social Sciences (Studies in Classification, Data Analysis, and Knowledge Organization)
by Donatella Vicari Akinori Okada Giancarlo Ragozini Claus WeihsThis volume presents theoretical developments, applications and computational methods for the analysis and modeling in behavioral and social sciences where data are usually complex to explore and investigate. The challenging proposals provide a connection between statistical methodology and the social domain with particular attention to computational issues in order to effectively address complicated data analysis problems. The papers in this volume stem from contributions initially presented at the joint international meeting JCS-CLADAG held in Anacapri (Italy) where the Japanese Classification Society and the Classification and Data Analysis Group of the Italian Statistical Society had a stimulating scientific discussion and exchange.
Analysis and Modeling of Coordinated Multi-neuronal Activity (Springer Series in Computational Neuroscience #12)
by Masami TatsunoSince information in the brain is processed by the exchange of spikes among neurons, a study of such group dynamics is extremely important in understanding hippocampus dependent memory. These spike patterns and local field potentials (LFPs) have been analyzed by various statistical methods. These studies have led to important findings of memory information processing. For example, memory-trace replay, a reactivation of behaviorally induced neural patterns during subsequent sleep, has been suggested to play an important role in memory consolidation. It has also been suggested that a ripple/sharp wave event (one of the characteristics of LFPs in the hippocampus) and spiking activity in the cortex have a specific relationship that may facilitate the consolidation of hippocampal dependent memory from the hippocampus to the cortex. The book will provide a state-of-the-art finding of memory information processing through the analysis of multi-neuronal data. The first half of the book is devoted to this analysis aspect. Understanding memory information representation and its consolidation, however, cannot be achieved only by analyzing the data. It is extremely important to construct a computational model to seek an underlying mathematical principle. In other words, an entire picture of hippocampus dependent memory system would be elucidated through close collaboration among experiments, data analysis, and computational modeling. Not only does computational modeling benefit the data analysis of multi-electrode recordings, but it also provides useful insight for future experiments and analyses. The second half of the book will be devoted to the computational modeling of hippocampus-dependent memory.
Analysis and Modeling of Radio Wave Propagation
by Christopher John ColemanThis comprehensive guide helps readers understand the theory and techniques needed to analyze and model radio wave propagation in complex environments. All of the essential topics are covered, from the fundamental concepts of radio systems, to complex propagation phenomena. These topics include diffraction, ray tracing, scattering, atmospheric ducting, ionospheric ducting, scintillation, and propagation through both urban and non-urban environments. Emphasis is placed on practical procedures, with detailed discussion of numerical and mathematical methods providing readers with the necessary skills to build their own propagation models and develop their own techniques. MATLAB functions illustrating key modeling ideas are provided online. This is an invaluable resource for anyone wanting to use propagation models to understand the performance of radio systems for navigation, radar, communications, or broadcasting.
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks
by Vinko JovicAnalysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book is accompanied by a website which hosts the author's software package, Simpip (an abbreviation of simulation of pipe flow) for solving non-steady pipe flow using the finite element method. The program also covers flows in channels. The book presents the numerical core of the SimpipCore program (written in Fortran). Key features: Presents the theory and practice of modelling different flows in hydraulic networks Takes a systematic approach and addresses the topic from the fundamentals Presents numerical solutions based on finite element analysis Accompanied by a website hosting supporting material including the SimpipCore project as a standalone program Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks is an ideal reference book for engineers, practitioners and graduate students across engineering disciplines.