- Table View
- List View
Statesmanship, Character, and Leadership in America
by Terry NewellNewell examines noted Americans at seven critical turning points in American history to look at what it takes to be a statesman. Through a powerful speech and the events preceding and following it, they show us how they grappled with conflicting values, varying demands, and the uncertainties of trying to forge a good society.
Stationäre Psychodynamische Psychotherapie: Ein Leitfaden für Theorie und Praxis (Psychotherapie: Praxis)
by Christian DürichIn diesem Buch erfahren Ärzte, Psychologen und therapeutisches Klinikpersonal, wie die Psychodynamische Psychotherapie im Rahmen eines integrativen Behandlungskonzepts stationär als eigenständiges Therapieverfahren umgesetzt wird: Ausgehend von intersubjektiven und gruppenanalytischen Entwicklungen aus Tiefenpsychologie und Psychoanalyse wird dargestellt, wie Übertragungs- und Gegenübertragungsanalyse als beziehungsreflexiver Teamprozess angewendet werden können, um konfliktneurotische, strukturelle und Traumafolgestörungen fundiert psychotherapeutisch zu behandeln. Aus dem Inhalt: Mit Fokus auf die Operationalisierte Psychodynamische Diagnostik werden psychische und psychosomatische Krankheitsbilder von Angst- bis Zwangsstörungen mit ihren Psychodynamiken und Beziehungsaspekten inklusive Fallbeispiele zum Nachschlagen zusammengefasst. Ergänzende Perspektiven bieten die störungsorientierte Integration psychotherapeutischer Methoden wie z. B. Stabilisations- oder Konfrontationstechniken sowie die Bezugnahme auf aktuelle Leitlinien. Ausführungen zu Indikationsstellung, Evaluation und Evidenz runden den Überblick ab. Über den Autor: Dr. med. Christian Dürich, Facharzt für Psychosomatische Medizin und Psychotherapie und Psychoanalytiker/Gruppenanalytiker, ist Chefarzt der Psychosomatik am Katholischen Krankenhaus Hagen. Er ist weiterbildungsermächtigter Arzt der Ärztekammer Westfalen-Lippe und Vorsitzender der Westfälischen Arbeitsgemeinschaft für Psychosomatik, Psychotherapie und Psychoanalyse.
Stations of the Mind
by William GlasserStations of the Mind is a logical and necessary expansion of William Glasser's basic Reality Therapy ideas, an expansion which began with Positive Addiction about meditation, running, and other "good" addictions. In clear, nontechnical language, this book tells how our brains function in living-specifically what we do, think, and feel. Any reader can use it to make a major impact on the social sciences, medicine, and the growing field of meditation. Dr. Glasser's thesis, based on the Control System Psychology of William Powers, a student of cybernetics and consultant on this book, is that we, like all living creatures, are internally motivated. All of us are driven by powerful internal forces that push us not only to survive, but toward belonging, worthwhileness, fun, and freedom. From these and perhaps our other basic needs, we construct a complex, unique a personal world. Our brain then acts as the control system that deals with the real world to try and control it so that it comes as close as possible to our personal world. Glasser points out that what happens outside us in the real world is of little or no significance unless it relates to what is already inside us in our personal world. This new, human, internally motivated psychology contrasts sharply with the standard, external, mechanical, stimulus-response behavior psychology currently so popular. Glasser strips away much of the mystery that has surrounded the workings of our mind. Those who read the book carefully need never again be puzzled as to how we behave or about many of the whys of our behavior. It explains the common psychological upsets-from acting out to depression, from nonmedical pain and disability to psychoses. Dr. Glasser sets forth a new usable explanation of how addictive drugs work in the brain and why we use them. He also explains how our brain malfunctions and causes us to suffer psychosomatic illnesses. Finally, as we understand how our brain struggles to fulfill our needs, we will gain valuable insight into our most pressing social problem-how to get along with each other; that must come through negotiation and compromise. Our brain is not built to do otherwise. Here is a carefully developed thesis, a clear explanation of complex ideas, and a wide variety of ways that we can use them in our lives and our work.
Statistical Analysis "In Focus": Alternate Guides for R, SAS, and Stata for Statistics for the Behavioral Sciences
by Dr Gregory J. Privitera Yu Lei Kristin L. SotakStatistical Analysis "In Focus": Alternate Guides for R, SAS, and Stata for Statistics for the Behavioral Sciences, Third Edition supports users of Gregory J. Privitera’s Statistics for the Behavioral Sciences, Third Edition who work with a statistical program other than SPSS or Excel. Three standalone parts, each dedicated to R, SAS, and Stata, serve as step-by-step guides for completing the “In Focus” exercises in Privitera’s core text. Gregory J. Privitera, Kristin Lee Sotak, and Yu Lei’s conversational writing style along with “To The Student” introductions allow students to familiarize themselves and become more comfortable with each program prior to making computations. Additionally, General Instruction Guidebook (GIG) sections for R, SAS, and Stata provide standardized how-to instructions for using each program, making the book a valuable reference for students beyond their studies.
Statistical Analysis "In Focus": Alternate Guides for R, SAS, and Stata for Statistics for the Behavioral Sciences
by Dr Gregory J. Privitera Yu Lei Kristin L. SotakStatistical Analysis "In Focus": Alternate Guides for R, SAS, and Stata for Statistics for the Behavioral Sciences, Third Edition supports users of Gregory J. Privitera’s Statistics for the Behavioral Sciences, Third Edition who work with a statistical program other than SPSS or Excel. Three standalone parts, each dedicated to R, SAS, and Stata, serve as step-by-step guides for completing the “In Focus” exercises in Privitera’s core text. Gregory J. Privitera, Kristin Lee Sotak, and Yu Lei’s conversational writing style along with “To The Student” introductions allow students to familiarize themselves and become more comfortable with each program prior to making computations. Additionally, General Instruction Guidebook (GIG) sections for R, SAS, and Stata provide standardized how-to instructions for using each program, making the book a valuable reference for students beyond their studies.
Statistical Analysis of Longitudinal Categorical Data in the Social and Behavioral Sciences: An introduction With Computer Illustrations
by Alexander von Eye Keith E. NiedermeierA comprehensive resource for analyzing a variety of categorical data, this book emphasizes the application of many recent advances of longitudinal categorical statistical methods. Each chapter provides basic methodology, helpful applications, examples using data from all fields of the social sciences, computer tutorials, and exercises. Written for social scientists and students, no advanced mathematical training is required. Step-by-step command files are given for both the CDAS and the SPSS software programs.
Statistical and Methodological Myths and Urban Legends: Doctrine, Verity and Fable in Organizational and Social Sciences
by Charles E. LanceThis book provides an up-to-date review of commonly undertaken methodological and statistical practices that are sustained, in part, upon sound rationale and justification and, in part, upon unfounded lore. Some examples of these "methodological urban legends", as we refer to them in this book, are characterized by manuscript critiques such as: (a) "your self-report measures suffer from common method bias"; (b) "your item-to-subject ratios are too low"; (c) "you can’t generalize these findings to the real world"; or (d) "your effect sizes are too low". Historically, there is a kernel of truth to most of these legends, but in many cases that truth has been long forgotten, ignored or embellished beyond recognition. This book examines several such legends. Each chapter is organized to address: (a) what the legend is that "we (almost) all know to be true"; (b) what the "kernel of truth" is to each legend; (c) what the myths are that have developed around this kernel of truth; and (d) what the state of the practice should be. This book meets an important need for the accumulation and integration of these methodological and statistical practices.
Statistical and Process Models for Cognitive Neuroscience and Aging (Notre Dame Series On Quantitative Methodology Ser.)
by Michael J. Wenger Christof SchusterStatistical and Process Models for Cognitive Neuroscience and Aging addresses methodological techniques for researching cognitive impairment, Alzheimer's disease, the biophysics and structure of the nervous system, the physiology of memory, and the analysis of EEG data. Each chapter, written by the expert in the area, provides a carefully crafted i
Statistical Approaches to Causal Analysis (The SAGE Quantitative Research Kit)
by Matthew McBeeThis book provides an up-to-date and accessible introduction to causal inference in quantitative research. Featuring worked example datasets throughout, it clearly outlines the steps involved in carrying out various types of statistical causal analysis. In turn, helping you apply these methods to your own research. It contains guidance on: Selecting the most appropriate conditioning method for your data. Applying the Rubin’s Causal Model to your analysis, a mathematical framework for understanding and ensuring accurate causation inferences. Utilising various techniques and designs, such as propensity scores, instrumental variables analysis, and regression discontinuity designs, to better synthesise and analyse different types of data. Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.
Statistical Approaches to Causal Analysis (The SAGE Quantitative Research Kit)
by Matthew McBeeThis book provides an up-to-date and accessible introduction to causal inference in quantitative research. Featuring worked example datasets throughout, it clearly outlines the steps involved in carrying out various types of statistical causal analysis. In turn, helping you apply these methods to your own research. It contains guidance on: Selecting the most appropriate conditioning method for your data. Applying the Rubin’s Causal Model to your analysis, a mathematical framework for understanding and ensuring accurate causation inferences. Utilising various techniques and designs, such as propensity scores, instrumental variables analysis, and regression discontinuity designs, to better synthesise and analyse different types of data. Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.
Statistical Approaches to Gene x Environment Interactions for Complex Phenotypes
by Michael WindleDiverse methodological and statistical approaches for investigating the role of gene-environment interactions in a range of complex diseases and traits. Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence—genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use. The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions. Contributors Fatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min Zhang
Statistical Approaches to Measurement Invariance
by Roger E. MillsapThis book reviews the statistical procedures used to detect measurement bias. Measurement bias is examined from a general latent variable perspective so as to accommodate different forms of testing in a variety of contexts including cognitive or clinical variables, attitudes, personality dimensions, or emotional states. Measurement models that underlie psychometric practice are described, including their strengths and limitations. Practical strategies and examples for dealing with bias detection are provided throughout. The book begins with an introduction to the general topic, followed by a review of the measurement models used in psychometric theory. Emphasis is placed on latent variable models, with introductions to classical test theory, factor analysis, and item response theory, and the controversies associated with each, being provided. Measurement invariance and bias in the context of multiple populations is defined in chapter 3 followed by chapter 4 that describes the common factor model for continuous measures in multiple populations and its use in the investigation of factorial invariance. Identification problems in confirmatory factor analysis are examined along with estimation and fit evaluation and an example using WAIS-R data. The factor analysis model for discrete measures in multiple populations with an emphasis on the specification, identification, estimation, and fit evaluation issues is addressed in the next chapter. An MMPI item data example is provided. Chapter 6 reviews both dichotomous and polytomous item response scales emphasizing estimation methods and model fit evaluation. The use of models in item response theory in evaluating invariance across multiple populations is then described, including an example that uses data from a large-scale achievement test. Chapter 8 examines item bias evaluation methods that use observed scores to match individuals and provides an example that applies item response theory to data introduced earlier in the book. The book concludes with the implications of measurement bias for the use of tests in prediction in educational or employment settings. A valuable supplement for advanced courses on psychometrics, testing, measurement, assessment, latent variable modeling, and/or quantitative methods taught in departments of psychology and education, researchers faced with considering bias in measurement will also value this book.
Statistical Concepts: A Second Course
by Richard G. Lomax Debbie L. Hahs-VaughnStatistical Concepts consists of the last 9 chapters of An Introduction to Statistical Concepts, 3rd ed. Designed for the second course in statistics, it is one of the few texts that focuses just on intermediate statistics. The book highlights how statistics work and what they mean to better prepare students to analyze their own data and interpret SPSS and research results. As such it offers more coverage of non-parametric procedures used when standard assumptions are violated since these methods are more frequently encountered when working with real data. Determining appropriate sample sizes is emphasized throughout. Only crucial equations are included. The new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. Much more on computing confidence intervals and conducting power analyses using G*Power. All new SPSS version 19 screenshots to help navigate through the program and annotated output to assist in the interpretation of results. Sections on how to write-up statistical results in APA format and new templates for writing research questions. New learning tools including chapter-opening vignettes, outlines, a list of key concepts, "Stop and Think" boxes, and many more examples, tables, and figures. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website with Power Points, answers to the even-numbered problems, detailed solutions to the odd-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets. Each chapter begins with an outline, a list of key concepts, and a research vignette related to the concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides tips for how to run SPSS and develop an APA style write-up. Tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. Each chapter includes computational, conceptual, and interpretive problems. Answers to the odd-numbered problems are provided. The SPSS data sets that correspond to the book’s examples and problems are available on the web.? The book covers basic and advanced analysis of variance models and topics not dealt with in other texts such as robust methods, multiple comparison and non-parametric procedures, and multiple and logistic regression models. Intended for courses in intermediate statistics and/or statistics II taught in education and/or the behavioral sciences, predominantly at the master's or doctoral level. Knowledge of introductory statistics is assumed.
Statistical Concepts - A First Course
by Debbie L. Hahs-Vaughn Richard G. LomaxStatistical Concepts—A First Course presents the first 10 chapters from An Introduction to Statistical Concepts, Fourth Edition. Designed for first and lower-level statistics courses, this book communicates a conceptual, intuitive understanding of statistics that does not assume extensive or recent training in mathematics and only requires a rudimentary knowledge of algebra. Covering the most basic statistical concepts, this book is designed to help readers really understand statistical concepts, in what situations they can be applied, and how to apply them to data. Specifically, the text covers basic descriptive statistics, including ways of representing data graphically, statistical measures that describe a set of data, the normal distribution and other types of standard scores, and an introduction to probability and sampling. The remainder of the text covers various inferential tests, including those involving tests of means (e.g., t tests), proportions, variances, and correlations. Providing accessible and comprehensive coverage of topics suitable for an undergraduate or graduate course in statistics, this book is an invaluable resource for students undertaking an introductory course in statistics in any number of social science and behavioral science disciplines.
Statistical Concepts - A Second Course
by Debbie L. Hahs-Vaughn Richard G. LomaxStatistical Concepts—A Second Course presents the last 10 chapters from An Introduction to Statistical Concepts, Fourth Edition. Designed for second and upper-level statistics courses, this book highlights how statistics work and how best to utilize them to aid students in the analysis of their own data and the interpretation of research results. In this new edition, Hahs-Vaughn and Lomax discuss sensitivity, specificity, false positive and false negative errors. Coverage of effect sizes has been expanded upon and more organizational features (to summarize key concepts) have been included. A final chapter on mediation and moderation has been added for a more complete presentation of regression models. This book acts as a clear and accessible instructional tool to help readers fully understand statistical concepts and how to apply them to data. It is an invaluable resource for students undertaking a course in statistics in any number of social science and behavioral science disciplines.
Statistical Inference and Probability (The SAGE Quantitative Research Kit)
by John MacInnesAn experienced author in the field of data analytics and statistics, John Macinnes has produced a straight-forward text that breaks down the complex topic of inferential statistics with accessible language and detailed examples. It covers a range of topics, including: · Probability and Sampling distributions · Inference and regression · Power, effect size and inverse probability Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.
Statistical Inference and Probability (The SAGE Quantitative Research Kit)
by John MacInnesAn experienced author in the field of data analytics and statistics, John Macinnes has produced a straight-forward text that breaks down the complex topic of inferential statistics with accessible language and detailed examples. It covers a range of topics, including: · Probability and Sampling distributions · Inference and regression · Power, effect size and inverse probability Part of The SAGE Quantitative Research Kit, this book will give you the know-how and confidence needed to succeed on your quantitative research journey.
Statistical Learning from a Regression Perspective (Springer Texts in Statistics)
by Richard A. BerkThis textbook considers statistical learning applications when interest centers on the conditional distribution of a response variable, given a set of predictors, and in the absence of a credible model that can be specified before the data analysis begins. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis depends in an integrated fashion on sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. The unifying theme is that supervised learning properly can be seen as a form of regression analysis. Key concepts and procedures are illustrated with a large number of real applications and their associated code in R, with an eye toward practical implications. The growing integration of computer science and statistics is well represented including the occasional, but salient, tensions that result. Throughout, there are links to the big picture. The third edition considers significant advances in recent years, among which are: the development of overarching, conceptual frameworks for statistical learning;the impact of “big data” on statistical learning;the nature and consequences of post-model selection statistical inference;deep learning in various forms;the special challenges to statistical inference posed by statistical learning;the fundamental connections between data collection and data analysis;interdisciplinary ethical and political issues surrounding the application of algorithmic methods in a wide variety of fields, each linked to concerns about transparency, fairness, and accuracy. This edition features new sections on accuracy, transparency, and fairness, as well as a new chapter on deep learning. Precursors to deep learning get an expanded treatment. The connections between fitting and forecasting are considered in greater depth. Discussion of the estimation targets for algorithmic methods is revised and expanded throughout to reflect the latest research. Resampling procedures are emphasized. The material is written for upper undergraduate and graduate students in the social, psychological and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems.
Statistical Methods: A Worktext Approach
by Cheryl A Willard• Statistical Methods: A Worktext Approach uses a student-friendly, conversational tone to explain core statistical concepts in a way that students can readily understand. • After concepts and skills are introduced and demonstrated, students are given a hands-on opportunity to work with the concepts and practice their newly acquired skills with Your Turn exercises. • Each chapter begins with a careful explanation of the statistical concepts relevant to that chapter. Following the explanation of concepts are examples that illustrate their applications. • Boxes containing helpful pointers for students are included in the chapters. These are often mnemonics for remembering concepts and precautions warning against common mistakes. • Statistical terms are in boldfaced type and italicized. They are defined in the text and also appear in the glossary in Appendix A. • An extensive instructor’s guide provides answers to the exercises.
Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis
by Cheryl Ann WillardStatistical Methods: An Introduction to Basic Statistical Concepts and Analysis, Second Edition is a textbook designed for students with no prior training in statistics. It provides a solid background of the core statistical concepts taught in most introductory statistics textbooks. Mathematical proofs are deemphasized in favor of careful explanations of statistical constructs.The text begins with coverage of descriptive statistics such as measures of central tendency and variability, then moves on to inferential statistics. Transitional chapters on z-scores, probability, and sampling distributions pave the way to understanding the logic of hypothesis testing and the inferential tests that follow. Hypothesis testing is taught through a four-step process. These same four steps are used throughout the text for the other statistical tests presented including t tests, one- and two-way ANOVAs, chi-square, and correlation. A chapter on nonparametric tests is also provided as an alternative when the requirements cannot be met for parametric tests.Because the same logical framework and sequential steps are used throughout the text, a consistency is provided that allows students to gradually master the concepts. Their learning is enhanced further with the inclusion of "thought questions" and practice problems integrated throughout the chapters. New to the second edition: Chapters on factorial analysis of variance and non-parametric techniques for all data Additional and updated chapter exercises for students to test and demonstrate their learning Full instructor resources: test bank questions, Powerpoint slides, and an Instructor Manual
Statistical Methods for Experimental Research in Education and Psychology (Springer Texts in Education)
by Jimmie LeppinkThis book focuses on experimental research in two disciplines that have a lot of common ground in terms of theory, experimental designs used, and methods for the analysis of experimental research data: education and psychology. Although the methods covered in this book are also frequently used in many other disciplines, including sociology and medicine, the examples in this book come from contemporary research topics in education and psychology. Various statistical packages, commercial and zero-cost Open Source ones, are used.The goal of this book is neither to cover all possible statistical methods out there nor to focus on a particular statistical software package. There are many excellent statistics textbooks on the market that present both basic and advanced concepts at an introductory level and/or provide a very detailed overview of options in a particular statistical software programme. This is not yet another book in that genre. Core theme of this book is a heuristic called the question-design-analysis bridge: there is a bridge connecting research questions and hypotheses, experimental design and sampling procedures, and common statistical methods in that context. Each statistical method is discussed in a concrete context of a set of research question with directed (one-sided) or undirected (two-sided) hypotheses and an experimental setup in line with these questions and hypotheses. Therefore, the titles of the chapters in this book do not include any names of statistical methods such as ‘analysis of variance’ or ‘analysis of covariance’. In a total of seventeen chapters, this book covers a wide range of topics of research questions that call for experimental designs and statistical methods, fairly basic or more advanced.
Statistical Methods for Modeling Human Dynamics: An Interdisciplinary Dialogue (Notre Dame Series on Quantitative Methodology)
by Sy-Minn Chow Emilio Ferrer Fushing HsiehThis interdisciplinary volume features contributions from researchers in the fields of psychology, neuroscience, statistics, computer science, and physics. State-of-the-art techniques and applications used to analyze data obtained from studies in cognition, emotion, and electrophysiology are reviewed along with techniques for modeling in real time and for examining lifespan cognitive changes, for conceptualizing change using item response, nonparametric and hierarchical models, and control theory-inspired techniques for deriving diagnoses in medical and psychotherapeutic settings. The syntax for running the analyses presented in the book is provided on the Psychology Press site. Most of the programs are written in R while others are for Matlab, SAS, Win-BUGS, and DyFA. Readers will appreciate a review of the latest methodological techniques developed in the last few years. Highlights include an examination of: Statistical and mathematical modeling techniques for the analysis of brain imaging such as EEGs, fMRIs, and other neuroscience data Dynamic modeling techniques for intensive repeated measurement data Panel modeling techniques for fewer time points data State-space modeling techniques for psychological data Techniques used to analyze reaction time data. Each chapter features an introductory overview of the techniques needed to understand the chapter, a summary, and numerous examples. Each self-contained chapter can be read on its own and in any order. Divided into three major sections, the book examines techniques for examining within-person derivations in change patterns, intra-individual change, and inter-individual differences in change and interpersonal dynamics. Intended for advanced students and researchers, this book will appeal to those interested in applying state-of-the-art dynamic modeling techniques to the the study of neurological, developmental, cognitive, and social/personality psychology, as well as neuroscience, computer science, and engineering.
Statistical Methods for Psychology
by David C. HowellSTATISTICAL METHODS FOR PSYCHOLOGY surveys the statistical techniques commonly used in the behavioral and social sciences, especially psychology and education. To help students gain a better understanding of the specific statistical hypothesis tests that are covered throughout the text, author David Howell emphasize conceptual understanding. Along with significantly updated discussions of effect size and meta-analysis, this Eighth Edition continues to focus on two key themes that are the cornerstones of this book's success: the importance of looking at the data before beginning a hypothesis test, and the importance of knowing the relationship between the statistical test in use and the theoretical questions being asked by the experiment.
Statistical Methods for Spoken Dialogue Management
by Blaise ThomsonSpeech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behaviour is controlled by predefined scripts that try to anticipate what the user will say and act accordingly. But speech recognisers make many errors and humans are not predictable; the result is systems which are difficult to design and fragile in use. Statistical methods for spoken dialogue management takes a radically different view. It treats dialogue as the problem of inferring a user's intentions based on what is said. The dialogue is modelled as a probabilistic network and the input speech acts are observations that provide evidence for performing Bayesian inference. The result is a system which is much more robust to speech recognition errors and for which a dialogue strategy can be learned automatically using reinforcement learning. The thesis describes both the architecture, the algorithms needed for fast real-time inference over very large networks, model parameter estimation and policy optimisation. This ground-breaking work will be of interest both to practitioners in spoken dialogue systems and to cognitive scientists interested in models of human behaviour.
Statistical Methods for Validation of Assessment Scale Data in Counseling and Related Fields
by Dimiter M. Dimitrov“Dr. Dimitrov has constructed a masterpiece—a classic resource that should adorn the shelf of every counseling researcher and graduate student serious about the construction and validation of high quality research instruments. —Bradley T. Erford, PhD Loyola University Maryland Past President, American Counseling Association “This book offers a comprehensive treatment of the statistical models and methods needed to properly examine the psychometric properties of assessment scale data. It is certain to become a definitive reference for both novice and experienced researchers alike.” —George A. Marcoulides, PhD University of California, Riverside This instructive book presents statistical methods and procedures for the validation of assessment scale data used in counseling, psychology, education, and related fields. In Part I, measurement scales, reliability, and the unified construct-based model of validity are discussed, along with key steps in instrument development. Part II describes factor analyses in construct validation, including exploratory factor analysis, confirmatory factor analysis, and models of multitrait-multimethod data analysis. Traditional and Rasch-based analyses of binary and rating scales are examined in Part III. Dr. Dimitrov offers students, researchers, and clinicians step-by-step guidance on contemporary methodological principles, statistical methods, and psychometric procedures that are useful in the development or validation of assessment scale data. Numerous examples, tables, and figures provided throughout the text illustrate the underlying principles of measurement in a clear and concise manner for practical application. *Requests for digital versions from ACA can be found on www.wiley.com. *To purchase print copies, please visit the ACA website here. *Reproduction requests for material from books published by ACA should be directed to permissions@counseling.org.