- Table View
- List View
Cell Biology: A Short Course (Short Course)
by Elizabeth A. Shephard Jeremy S. Hyams Stephen R. Bolsover Andrea Townsend-Nicholson Greg FitzHarris Sandip PatelAn accessible and straightforward intro to cell biology In the newly revised Fourth Edition of Cell Biology: A Short Course, a distinguished team of researchers delivers a concise and accessible introduction to modern cell biology, integrating knowledge from genetics, molecular biology, biochemistry, physiology, and microscopy. The book places a strong emphasis on drawing connections between basic science and medicine. Telling the story of cells as the units of life in a colorful and student-friendly manner, Cell Biology: A Short Course takes an “essentials only” approach. It conveys critical points without overburdening the reader with extraneous or secondary information. Clear diagrams and examples from current research accompany special boxed sections that focus on the importance of cell biology in medicine and industry. A new feature, “BrainBoxes” describes some of the key people who created the current understanding of Cell Biology. The book has been thoroughly revised and updated since the last edition and includes: Thorough introduction to cells and tissues, membranes, organelles, and the structure of DNA and genetic code Explorations of DNA as a data storage medium, transcription and the control of gene expression, and recombinant DNA and genetic engineering Discussion of the manufacture of proteins, protein structure, and intracellular protein trafficking Description of ions and voltages, intracellular and extracellular signaling Introduction to the cytoskeleton and cell movement Discussion of cell division and apoptosisPerfect for undergraduate students seeking an accessible, one-stop reference on cell biology, Cell Biology: A Short Course is also an ideal reference for pre-med students.
Cell Boundaries: How Membranes and Their Proteins Work
by Stephen H White Gunnar von Heijne Donald M EngelmanThe central themes of Cell Boundaries concern the structural and organizational principles underlying cell membranes, and how these principles enable function. By building a biological and biophysical foundation for understanding the organization of lipids in bilayers and the folding, assembly, stability, and function of membrane proteins, the book aims to broaden the knowledge of bioscience students to include the basic physics and physical chemistry that inform us about membranes. In doing so, it is hoped that physics students will find familiar territory that will lead them to an interest in biology. Our progress toward understanding membranes and membrane proteins depends strongly upon the concerted use of both biology and physics. It is important for students to know not only what we know, but how we have come to know it, so Cell Boundaries endeavours to bring out the history behind the central discoveries, especially in the early chapters, where the foundation is laid for later chapters. Science is far more interesting if, as students, we can appreciate and share in the adventures—and misadventures—of discovering new scientific knowledge. Cell Boundaries was written with advanced undergraduates and beginning graduate students in the biological and physical sciences in mind, though this textbook will likely have appeal to researchers and other academics as well. Highlights the history of important central discoveries Early chapters lay the foundation for later chapters to build on, so knowledge is amassed High-quality line diagrams illustrate key concepts and illuminate molecular mechanisms Box features and spreads expand on topics in main text, including histories of discoveries, special techniques, and applications
Cell Culture Bioprocess Engineering, Second Edition
by Wei-Shou HuThis book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.
Cell Culture Engineering and Technology: In appreciation to Professor Mohamed Al-Rubeai (Cell Engineering #10)
by Ralf PörtnerThis contributed volume is dedicated towards the progress achieved within the last years in all areas of Cell Culture Engineering and Technology. It comprises contributions of active researchers in the field of cell culture development for the production of recombinant proteins, cell line development, cell therapy and gene therapy, with consideration of media development, process scale-up, reactor design, monitoring and control and model-assisted strategies for process design. The knowledge and expertise of the authors cover disciplines like cell biology, engineering, biotechnology and biomedical sciences. This book is conceived for graduate students, postdoctoral fellows and researchers interested in the latest developments in Cell Engineering.
Cell Culture Engineering: Recombinant Protein Production (Advanced Biotechnology)
by Jens Nielsen Gregory Stephanopoulos Sang Yup LeeOffers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.
Cell Culture Models of Biological Barriers: In vitro Test Systems for Drug Absorption and Delivery
by Claus-Michael LehrOver the past ten years several sophisticated in vitro test systems based on epithelial cell cultures have been introduced in the field of drug delivery. These models have been found to be very useful in characterizing the permeability of drugs across epithelial tissues, and in studying formulations or carrier systems for improved drug delivery and
Cell Culture Techniques (Neuromethods #145)
by Michael Aschner Lucio CostaThis volume discusses the requirements, advantages, and limitations of studying cell culture. The chapters in this book cover topics such as in vitro blood-brain barrier functional assays in human iPSC-based models; neuron-glia interactions examines with in vitro co-culture; epigenetic changes in cultures neurons and astrocytes; rat brain slices; brain punching technique; and using microRNA for in vitro neurotoxicity testing and related disorders. In Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Authoritative and cutting-edge, Cell Culture Techniques, Second Edition is a valuable resource for students and experiences researchers who are interested in learning more and making risk decisions in this evolving field.
Cell Culture Technology (Learning Materials in Biosciences #4)
by Cornelia Kasper Verena Charwat Antonina LavrentievaThis textbook provides an overview on current cell culture techniques, conditions, and applications specifically focusing on human cell culture. This book is based on lectures, seminars and practical courses in stem cells, tissue engineering, regenerative medicine and 3D cell culture held at the University of Natural Resources and Life Sciences Vienna BOKU and the Gottfried Wilhelm Leibniz University Hannover, complemented by contributions from international experts, and therefore delivers in a compact and clear way important theoretical, as well as practical knowledge to advanced graduate students on cell culture techniques and the current status of research. The book is written for Master students and PhD candidates in biotechnology, tissue engineering and biomedicine working with mammalian, and specifically human cells. It will be of interest to doctoral colleges, Master- and PhD programs teaching courses in this area of research.
Cell Culture Technology for Pharmaceutical and Cell-Based Therapies (Biotechnology and Bioprocessing)
by Sadettin S. OzturkEdited by two of the most distinguished pioneers in genetic manipulation and bioprocess technology, this bestselling reference presents a comprehensive overview of current cell culture technology used in the pharmaceutical industry. Contributions from several leading researchers showcase the importance of gene discovery and genomic technology devel
Cell Culture and Upstream Processing
by Michael ButlerUpstream processing refers to the production of proteins by cells genetically engineered to contain the human gene which will express the protein of interest. The demand for large quantities of specific proteins is increasing the pressure to boost cell culture productivity, and optimizing bioreactor output has become a primary concern for most pharmaceutical companies. Each chapter in Cell Culture and Upstream Processing is taken from presentations at the highly acclaimed IBC conferences as well as meetings of the European Society for Animal Cell Technology (ESACT) and Protein Expression in Animal Cells (PEACe) and describes how to improve yield and optimize the cell culture production process for biopharmaceuticals, by focusing on safety, quality, economics and operability and productivity issues. Cell Culture and Upstream Processing will appeal to a wide scientific audience, both professional practitioners of animal cell technology as well as students of biochemical engineering or biotechnology in graduate or high level undergraduate courses at university.
Cell Cycle Checkpoint Control Protocols (Methods in Molecular Biology #241)
by Howard B. LiebermanA collection of basic cutting-edge techniques for studying the mechanisms underlying cell cycle regulation and checkpoint control. Using mammalian, yeast, and frog systems, these readily reproducible methods can be used to induce cell cycle checkpoints, detect changes in cell cycle progression, identify and analyze genes and proteins that regulate the process, and characterize chromosomal status as a function of cell cycle phase and progression. Each fully tested technique includes step-by-step instructions written by an investigator who routinely performs it, an introduction explaining the principle behind the method, equipment and reagent lists, and tips on troubleshooting and avoiding known pitfalls.
Cell Cycle Checkpoints: Methods and Protocols (Methods in Molecular Biology #2267)
by James J. ManfrediThis volume explores the latest advancements in the field of cell cycle checkpoints and their implications for human diseases. Chapters in this book cover topics such as post-translationally modified p53 by western blotting; CHK1 cellular localization by immunofluorescence microscopy; DNA affinity purification; knockdown of target genes by siRNA in vitro; and calreticulin exposure in mitotic catastrophe. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and thorough, Cell Cycle Checkpoints: Methods and Protocols is a valuable resource for researcher interested in learning more about this developing field.
Cell Cycle Checkpoints: Methods and Protocols (Methods in Molecular Biology #782)
by Willis X. LiCell cycle checkpoints control the fidelity and orderly progression of eukaryotic cell division. By controlling the orderly progression of critical cell cycle events such as DNA replication and chromosome segregation and ensuring proper repair of damaged DNA, cell cycle checkpoints function to ensure genome integrity. Mechanisms of checkpoint controls are not only the research focus of investigators interested in mechanisms that regulate the cell cycle, but are also the interests of researchers studying cancer development as it is increasingly clear that loss of cell cycle checkpoints, which leads to genomic instability as a result, is a hallmark of tumorigenesis. Cell Cycle Checkpoints: Methods and Protocols provides detailed descriptions of methodologies currently employed by researchers in the field, including those commonly used in the mammalian, yeast, C. elegans, Drosophila, and Xenopus model systems. Each chapter describes a specific technique or protocol, such as a method to induce cell cycle checkpoints in a particular model system, to synchronize a population of cells to allow observations of cell cycle progression, to identify genes involved in checkpoint regulation, and to study particular protein components of cell cycle checkpoint pathways. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Cell Cycle Checkpoints: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this essential field.
Cell Cycle Control: Mechanisms and Protocols (Methods in Molecular Biology #1170)
by Eishi Noguchi Mariana C. GadaletaA collection of new reviews and protocols from leading experts in cell cycle regulation, Cell Cycle Control: Mechanisms and Protocols, Second Edition presents a comprehensive guide to recent technical and theoretical advancements in the field. Beginning with the overviews of various cell cycle regulations, this title presents the most current protocols and state-of-the-art techniques used to generate latest findings in cell cycle regulation, such as protocols to analyze cell cycle events and molecules. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Cell Cycle Control: Mechanisms and Protocols, Second Edition will be a valuable resource for a wide audience, ranging from the experienced cell cycle researchers looking for new approaches to the junior graduate students giving their first steps in cell cycle research.
Cell Cycle Control: Mechanisms and Protocols (Methods in Molecular Biology #296)
by Gavin Brooks Tim HumphreyThis collection of cutting-edge techniques for the study of the eukaryotic cell cycle and its key regulatory molecules includes overviews of cell cycle regulatory mechanisms in many major research organisms. Described in step-by-step detail, these readily reproducible methods enable fundamental research on well-defined cell cycle regulators-and those more recently defined-in yeasts, bacteria, plants, Drosophila, Xenopus, and mammals. The book offers all cell researchers indispensable techniques essential to understanding how normal cells divide and how this is altered in disease.
Cell Cycle Control: Methods and Protocols (Methods in Molecular Biology #2740)
by Anna Castro Benjamin LacroixThis detailed volume collects techniques to study the highly regulated cell cycle process. Beginning with chapters investigating these processes and assessing how cells respond when these complicated pathways are simplified by using synthetic biology and in vitro reconstitutions, the book continues by exploring how cells sense and respond to environmental conditions, different model systems and cellular types used to visualize cellular architecture during cell division, as well as innovative single cell microscopy techniques to highlight the heterogeneity of the cell population with respect to cell cycle progression. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cell Cycle Control: Methods and Protocols serves as an ideal guide for researchers attempting to elucidate this vital area of cell biology.
Cell Cycle Oscillators: Methods and Protocols (Methods in Molecular Biology #1342)
by Amanda S. Coutts Louise WestonThis volume brings together a unique collection of protocols that cover standard, novel, and specialized techniques. Cell Cycle Oscillators: Methods and Protocols guides readers through recent progress in the field from both holistic and reductionist perspectives, providing the latest developments in molecular biology techniques, biochemistry, and computational analysis used for studying oscillatory networks. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Cell Cycle Oscillators: Methods and Protocols will serve as an invaluable reference to gain further insight into the complex and incompletely understood processes that are involved in the cell cycle and its regulation by oscillatory networks.
Cell Cycle Oscillators: Methods and Protocols (Methods in Molecular Biology #2329)
by Amanda S. Coutts Louise WestonThis book brings together a unique collection of protocols that cover novel and specialized techniques as well as updated and improved adaptations of more standard procedures involving the cell cycle and its regulation by oscillatory networks, exploring recent progress in the field from both holistic and reductionist perspectives. The edition provides a space for researchers to highlight and explore the latest developments in molecular biology and biochemical techniques for studying oscillatory networks and to share these across the research community to facilitate further progress. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cell Cycle Oscillators: Methods and Protocols, Second Edition serves as an invaluable guide for those new to the field as well as the more experienced scientist.Chapter 19 is available open access under a CC BY 4.0 license.
Cell Cycle Regulation and Development in Alphaproteobacteria
by Emanuele BiondiThis book provides a comprehensive overview of the cell cycle regulation and development in Alphaproteobacteria. Cell cycle and cellular differentiation are fascinating biological phenomena that are highly regulated in all organisms. In the last decades, many laboratories around the world have been investigating these processes in Alphaproteobacteria. This bacterial class comprises important bacterial species, studied by fundamental and applied research. The complexity of cell cycle regulation and many examples of cellular differentiations in this bacterial group represent the main motives of this book. The book starts with discussing the regulation of cell cycle in alphaproteobacterial species from a system biology perspective. The following chapters specifically focus on the model species Caulobacter crescentus multiple layers of regulation, from transcriptional cascades to proteolysis and dynamic subcellular regulation of cell cycle regulators. In addition, the cell division process, chromosome segregation and growth of the cell envelope is described in detail. The last part of the book covers examples of non-Caulobacter alphaproteobacterial models, such as Agrobacterium tumefaciens, Brucella species and Sinorhizobium meliloti and also discusses possible applications. This book will be of interest to researchers in microbiology and cell biology labs working on cell cycle regulation and development.
Cell Cycle Synchronization: Methods and Protocols (Methods in Molecular Biology #1524)
by Gaspar BanfalviTo prepare synchronized cells representing different stages of the cell cycle has been a great challenge for researchers across the globe. In Cell Cycle Synchronization: Methods and Protocols, experts in the field supply detailed protocols providing first the theoretical background of the procedure then step-by-step instructions on how to implement synchronization as well as the latest techniques for the enhanced study of regulatory mechanisms to understand cell cycle events. Describing synchronized cells from asynchronous bacterial, plant, protozoan, yeast, fish, and mammalian cell cultures, the synchronization methods presented in the book are based principally on two major strategies: the "arrest-and-release" approach, which involves different chemical treatments to block cells at certain stages of the cell cycle, and the physical strategy, which contains physical methods to collect cells belonging to subpopulations of the cell cycle. Written in the highly successful Methods in Molecular Biology(tm) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Detailed and easy to follow, Cell Cycle Synchronization: Methods and Protocols is an ideal guide for scientists who wish to make use of these powerful synchronization techniques but have no access to thorough, time-tested protocols designed for doing so.
Cell Cycle Synchronization: Methods and Protocols (Methods in Molecular Biology #761)
by Gaspar BanfalviTo prepare synchronized cells representing different stages of the cell cycle has been a great challenge for researchers across the globe. In Cell Cycle Synchronization: Methods and Protocols, experts in the field supply detailed protocols providing first the theoretical background of the procedure then step-by-step instructions on how to implement synchronization as well as the latest techniques for the enhanced study of regulatory mechanisms to understand cell cycle events. Describing synchronized cells from asynchronous bacterial, plant, protozoan, yeast, fish, and mammalian cell cultures, the synchronization methods presented in the book are based principally on two major strategies: the "arrest-and-release" approach, which involves different chemical treatments to block cells at certain stages of the cell cycle, and the physical strategy, which contains physical methods to collect cells belonging to subpopulations of the cell cycle. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Detailed and easy to follow, Cell Cycle Synchronization: Methods and Protocols is an ideal guide for scientists who wish to make use of these powerful synchronization techniques but have no access to thorough, time-tested protocols designed for doing so.
Cell Cycle in Development (Results and Problems in Cell Differentiation #53)
by Jacek Z. KubiakThis book focuses on the intersection between cell cycle regulation and embryo development. Specific modifications of the canonical cell cycle occur throughout the whole period of development and are adapted to fulfil functions coded by the developmental program. Deciphering these adaptations is essential to comprehending how living organisms develop. The aim of this book is to review the best-known modifications and adaptations of the cell cycle during development. The first chapters cover the general problems of how the cell cycle evolves, while consecutive chapters guide readers through the plethora of such phenomena. The book closes with a description of specific changes in the cell cycle of neurons in the senescent human brain. Taken together, the chapters present a panorama of species - from worms to humans - and of developmental stages - from unfertilized oocyte to aged adult.
Cell Death During HIV Infection
by Andrew D. BadleyIn an effort to go beyond immune-based therapies, researchers are now considering the implications of apoptosis dysregulation during HIV-induced immunodeficiency. This work provides the first comprehensive compendium of the progress made in understanding the process of cell death related to HIV and the potential breakthroughs in treatment that offer much promise. Combining the work of more than two-dozen top researchers, this seminal volume provides clinicians and researchers with an excellent reference, while also serving as an incubator to stimulate future research. It explains the fundamental biology involved with apoptosis, explains its clinical impact in HIV, and examines the newest therapeutic approaches.
Cell Death Signaling in Cancer Biology and Treatment (Cell Death in Biology and Diseases #1)
by Daniel JohnsonA key goal in the treatment of cancer is to achieve selective and efficient killing of tumor cells. The aim of Cell Death Signaling in Cancer Biology and Treatment is to describe state-of-the-art approaches and future opportunities for achieving this goal by targeting mechanisms and pathways that regulate cancer cell death. In this book, molecular defects in cell death signaling that characterize cancer cells, including dysregulation of cell death due to overexpression/hyperactivation of oncoproteins, as well as the loss of tumor suppressor proteins will be described. The potential for targeting microRNAs will be discussed. Multiple chapters will describe preclinical and clinical approaches that are currently being used to target epigenetic modifications, DNA repair pathways, and protein chaperones, as a means of provoking tumor cell death. Finally, the development and application of novel agents and approaches for targeting specific components of cell death signaling pathways and machinery will be reviewed.
Cell Death: Mechanism and Disease
by Hao WuBeginning from centuries of anecdotal descriptions of cell death, such as those on the development of the midwife toad in 1842 by Carl Vogt, to modern-day investigations of cell death as a biological discipline, it has become accepted that cell death in multicellular organisms is a normal part of life. This book provides a comprehensive view of cell death, from its mechanisms of initiation and execution, to its implication in human disease and therapy. Physiological cell death plays critical roles in almost all aspects of biology, and the book details its roles in lymphocyte homeostasis, neuronal function, metabolism, and the DNA damage response. When physiological cell death goes awry, diseases can arise, and cancer is presented as a central paradigm for the consequences of derangements in the interplay between cell survival and cell death. At the same time, the potential promise of targeted therapies aimed at interdicting cell death machineries are also discussed extensively. The molecular mechanisms that underlie apoptotic cell death are illustrated from the perspectives of both the intrinsic, mitochondrial apoptotic pathway and the extrinsic, death receptor pathway. Key players in these pathways, such as the Bcl2 family proteins, cytochrome c, Apaf-1, caspases, death receptor adapter proteins, and inhibitor of apoptosis proteins, are presented from both functional and structural angles. Until only a few years ago, programmed cell death has been considered essentially synonymous with apoptosis. However, we now know that programmed cell death can also take other forms such as necrosis or necroptosis, and to this end, the mechanisms that underlie programmed necrosis in development and host defense are illustrated. The past twenty plus years have seen an incredible growth of research in cell death, with one breakthrough after another, and the legacy still goes on with constant new surprises and findings. Long live cell death!