- Table View
- List View
Collisionless Plasmas in Astrophysics
by Fabrice Mottez Roland Grappin Filippo Pantellini Gérard Belmont Guy PelletierCollisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations are given in both space physics and astrophysics.
Collisions Engineering: Theory and Applications (Springer Series in Solid and Structural Mechanics #6)
by Michel FrémondThis book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.
Collisions: A Physicist's Journey from Hiroshima to the Death of the Dinosaurs
by Alec Nevala-LeeFrom the acclaimed biographer of Buckminster Fuller, a riveting biography of the Nobel Prize–winning physicist who became the greatest scientific detective of the twentieth century. To his admirers, Luis W. Alvarez was the most accomplished, inventive, and versatile experimental physicist of his generation. During World War II, he achieved major breakthroughs in radar, played a key role in the Manhattan Project, and served as the lead scientific observer at the bombing of Hiroshima. In the decades that followed, he revolutionized particle physics with the hydrogen bubble chamber, developed an innovative X-ray method to search for hidden chambers in the Pyramid of Chephren, and shot melons at a rifle range to test his controversial theory about the Kennedy assassination. At the very end of his life, he collaborated with his son to demonstrate that an asteroid impact was responsible for the extinction of the dinosaurs, igniting a furious debate that raged for years after his death. Alvarez was also a combative and relentlessly ambitious figure—widely feared by his students and associates—who testified as a government witness at the security hearing that destroyed the public career of his friend and colleague J. Robert Oppenheimer. In the first comprehensive biography of Alvarez, Alec Nevala-Lee vividly recounts one of the most compelling untold stories in modern science, a narrative overflowing with ideas, lessons, and anecdotes that will fascinate anyone with an interest in how genius and creativity collide with the problems of an increasingly challenging world.
Colloid And Surface Properties Of Clays And Related Minerals (Surfactant Science)
by Carel J. van Oss Rossman F. GieseDiscusses measuring the surface properties of flat or particulate solids with contact angles of drops of high-energy liquids deposited on solid surfaces or via the thin-layer wicking technique. It focuses on Lifshitz-van der Waals, Lewis acid-base, and electrical double layer interactions.
Colloid Process Engineering
by Heike P. Schuchmann Matthias Kind Wolfgang Peukert Heinz RehageThis book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.
Colloid and Interface Chemistry for Nanotechnology (Progress in Colloid and Interface Science)
by Reinhard Miller Peter Kralchevsky Francesca RaveraColloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research te
Colloid and Surface Chemistry: A Laboratory Guide for Exploration of the Nano World
by Seyda Bucak Deniz RendeWith principles that are shaping today's most advanced technologies, from nanomedicine to electronic nanorobots, colloid and interface science has become a truly interdisciplinary field, integrating chemistry, physics, and biology. Colloid and Surface Chemistry: Exploration of the Nano World- Laboratory Guide explains the basic principles of colloi
Colloidal Active Matter: Concepts, Experimental Realizations, and Models (Advances in Biochemistry and Biophysics)
by Francesc Sagués MestreWhat do bird flocks, bacterial swarms, cell tissues, and cytoskeletal fluids have in common? They are all examples of active matter. This book explores how scientists in various disciplines, from physics to biology, have collated a solid corpus of experimental designs and theories during the last two decades to decipher active systems. The book addresses, from a multidisciplinary viewpoint, the field of active matter at a colloidal scale. Concepts, experiments, and theoretical models are put side by side to fully illuminate the subtilities of active systems. A large variety of subjects, from microswimmers or driven colloids to self-organized active fluids, are analysed within a unified perspective. Generic collective effects of self-propelled or driven colloids, such as motility-induced flocking, and new paradigms, such as the celebrated concept of active nematics in reconstituted protein-based fluids, are discussed using well-known experimental scenarios and recognized theories. Topics are covered with rigor and in a self-consistent way, reaching both practitioners and newcomers to the field. The diversity of topics and conceptual challenges in active matter have long hampered the chance to explore the field with a general perspective. This monograph, the first single-authored title on active matter, is intended to fill this gap by bridging disparate experimental and theoretical interests from colloidal soft matter to cell biophysics.
Colloidal Biomolecules, Biomaterials, and Biomedical Applications (Surfactant Science)
by Abdelhamid ElaissariColloidal Biomolecules, Biomaterials, and Biomedical Applications is an authoritative presentation of established and recent techniques promising to revolutionize the areas of biomedical diagnostics, therapeutics, pharmaceutics, and drug delivery. This exceptional book details an original homogeneous assay for biomolecule detection and capture through duplex colloid particles, as well as new methods for utilizing peptides in particle agglutination. Featuring contributions from over 30 prominent researchers, it investigates physical studies of the agglutination of sensitive latexes, and indicates benefits to drug delivery through supercritical fluid process production of polymer particles.
Colloidal Crystals of Spheres and Cubes in Real and Reciprocal Space (Springer Theses)
by Janne-Mieke MeijerThis thesis presents an in-depth study on the effect of colloidal particle shape and formation mechanism on self-organization and the final crystal symmetries that can be achieved. It demonstrates how state-of-the-art X-ray diffraction techniques can be used to produce detailed characterizations of colloidal crystal structures prepared using different self-assembly techniques, and how smart systems can be used to investigate defect formation and diffusion in-situ. One of the most remarkable phenomena exhibited by concentrated suspensions of colloidal particles is the spontaneous self-organization into structures with long-range spatial and/or orientational orders. The study also reveals the subtle structural variations that arise by changing the particle shape from spherical to that of a rounded cube. In particular, the roundness of the cube corners, when combined with the self-organization pathway, convective assembly or sedimentation, was shown to influence the final crystal symmetries.
Colloidal Dispersions Under Slit-Pore Confinement (Springer Theses)
by Yan ZengThis dissertation contributes to the understanding of fundamental issues in the highly interdisciplinary field of colloidal science. Beyond colloid science, the system also serves as a model for studying interactions in biological matter. This work quantitatively investigated the scaling laws of the characteristic lengths of the structuring of colloidal dispersions and tested the generality of these laws, thereby explaining and resolving some long-standing contradictions in literature. It revealed the effect of confinement on the structuring, independently of specific properties of the confining interfaces. In addition, it resolved the influence of roughness and charge of the confining interfaces on the structuring and as well providing a method to measure the effect of surface deformability on colloidal structuring.
Colloidal Drug Delivery Systems (Drugs and the Pharmaceutical Sciences)
by Jorg KreuterThis volume provides a single-source of reviews for all the important colloidal drug delivery systems, including nanoparticles, liposomes, niosomes, microemulsions and ointments. Over 1000 bibliographic citations, as well as tables, drawings, equations and photographs, are provided. Arranged in order of increasing physical complexity, this work ana
Colloidal Gold Nanorods: Science and Technology
by Nikhil Ranjan JanaThis book covers the synthesis and applications of colloidal gold nanorods including their properties, approaches for various chemical synthesis, and different gold nanorod-based nanocomposites with their properties and application potentials. Furthermore, it covers the surface chemistry and functionalization of gold nanorods for numerous biomedical applications. Various applications of gold nanorods including optical probes, dark filed contrast agents, photothermal therapy agents, and plasmonic photocatalyst are covered, along with the toxicological aspects. Features: Covers all aspects of gold nanorods along with selected protocols Focuses on synthetic chemistry, optical property, and functionalization approach of colloidal gold nanorods Describes standard synthetic methods and advantages of gold nanorods in biomedical applications Includes authentic and reproducible experimental procedures Discusses applications like redox catalysts, catalyst promoters, delivery carriers, solar cell materials, and so forth This book aims at graduate students and researchers interested in nanotechnology and gold nanoparticles.
Colloidal Nanoparticles for Heterogeneous Catalysis (Springer Theses)
by Priscila DestroThis book explores the formation of colloidal gold–copper (AuCu) alloy nanoparticles and evaluate their application in heterogeneous catalysis. Metal alloys are extremely versatile materials that have been used since the Antiquity to improve the properties of commonly used metals, therefore the understanding of their properties has fostered the applications in areas such as photonics, sensors, clinical diagnostics, and especially in heterogeneous catalysis, which allows catalyst active sites to be modulated.In this book, readers will appreciate the fundamental aspects involved in the synthesis of AuCu nanoalloys, including real-time information about their atomic organization, electronic properties, as well a deeper understand about the behavior of AuCu supported nanoalloys under real catalytic conditions, providing interesting insights about the effect of the support on the nanoalloy stability. The results presented here open new horizons for using metal alloys in catalysis and also other areas where the metal–support interface may play a crucial role.
Colloidal Nanoparticles: Functionalization for Biomedical Applications
by Nikhil R JanaThis book will focus on synthesis, coating and functionalization chemistry of selected nanoparticles that are most commonly used in various biomedical applications. Apart from standard selected chemical synthetic methods, it focusses on design consideration of functionalization, selected coating chemistry for transforming as synthesized nanoparticle, selected conjugation chemistries and purification approach for such nanoparticles. It also includes state-of-art/future prospect of nanodrugs suitable for clinical applications. There will material on general application potential of these nanoparticles, importance of functionalization and common problems faced by non-chemists.
Colloidal Polymers: Synthesis and Characterization (Surfactant Science #Vol. 115)
by Abdelhamid ElaissariAmidst developments in nanotechnology and successes in catalytic emulsion polymerization of olefins, polymerization in dispersed media is arousing an increasing interest from both practical and fundamental points of view. This text describes ultramodern approaches to synthesis, preparation, characterization, and functionalization of latexes, nanopa
Colloidal Quantum Dot Light Emitting Diodes: Materials and Devices
by Hong MengColloidal Quantum Dot Light Emitting Diodes Explore all the core components for the commercialization of quantum dot light emitting diodes Quantum dot light emitting diodes (QDLEDs) are a technology with the potential to revolutionize solid-state lighting and displays. Due to the many applications of semiconductor nanocrystals, of which QDLEDs are an example, they also hold the potential to be adapted into other emerging semiconducting technologies. As a result, it is critical that the next generation of engineers and materials scientists understand these diodes and their latest developments. Colloidal Quantum Dot Light Emitting Diodes: Materials and Devices offers a comprehensive introduction to this subject and its most recent research advancements. Beginning with a summary of the theoretical foundations and the basic methods for chemically synthesizing colloidal semiconductor quantum dots, it identifies existing and future applications for these groundbreaking technologies. The result is tailored to produce a thorough understanding of this area of research. Colloidal Quantum Dot Light Emitting Diodes readers will also find: An author with decades of experience in the field of organic electronics Detailed discussion of topics including advanced display technologies, the patent portfolio and commercial considerations, and more Strategies and design techniques for improving device performance Colloidal Quantum Dot Light Emitting Diodes is ideal for material scientists, electronics engineers, inorganic and solid-state chemists, solid-state and semiconductor physicists, photochemists, and surface chemists, as well as the libraries that support these professionals.
Colloidal Quantum Dot Optoelectronics and Photovoltaics
by Gerasimos Konstantatos Edward H. Sargent Gerasimos Konstantatos Edward H. SargentCapturing the most up-to-date research in colloidal quantum dot (CQD) devices, this book is written in an accessible style by the world's leading experts. The application of CQDs in solar cells, photodetectors and light-emitting diodes (LEDs) has developed rapidly over recent years, promising to transform the future of clean energy, communications, and displays. This complete guide to the field provides researchers, students and practitioners alike with everything they need to understand these developments and begin contributing to future applications. Introductory chapters summarise the fundamental physics and chemistry, whilst later chapters review the developments that have propelled the field forwards, systematically working through key device advances. The science of CQD films is explained through the latest physical models of semiconductor transport, trapping and recombination, whilst the engineering of organic and inorganic multilayered materials is shown to have enabled major advances in the brightness and efficiency of CQD LEDs.
Colloidal Science of Flotation (Surfactant Science #118)
by Ahn Nguyen Hans Joachim SchulzeKeeping pace with explosive developments in the field, Colloidal Science of Flotation reviews and updates the fundamentals of the bubble-particle collection phenomenon using a self-consistent approach that helps readers understand the hydrodynamic aspects of bubble-particle collection. The authors examine bubble rise velocity, water velocity around air bubbles, the thinning of intervening liquid films, the stability of particle-bubble aggregates, and macroscopic processes in froth. They also survey the applicability of emerging technologies in industrial flotation deinking, wastewater treatment, flotation of plastics, and improvements in minerals and coal flotation.
Colloidal Self-Assembly (Lecture Notes in Chemistry #108)
by Junpei Yamanaka Tohru Okuzono Akiko ToyotamaThis concise book covers fundamental principles of colloidal self-assembly and overviews of basic and applied research in this field, with abundant illustrations and photographs. Experimental and computer simulation methods to study the colloidal self-assembly are demonstrated. Complementary videos "Visual Guide to Study Colloidal Self-Assembly" on the research procedures and assembly processes are available via SpringerLink to support learning.The book explains basic elements of mechanics and electromagnetism required to study the colloidal self-assembly, so that graduate students of chemistry and engineering courses can learn the contents on their own. It reviews important research topics, including the authors' works on the colloidal self-assembly of more than 30 years’ work. The principal topics include: (1) crystallization of colloidal dispersions, with the emphasis on the role of surface charges, (2) fabrication of large and high-quality colloidal crystals by applying controlled growth methods, (3) association and crystallization by depletion attraction in the presence of polymers, (4) clustering of colloidal particles, especially those in oppositely charged systems, and (5) two-dimensional colloidal crystals. Furthermore, it covers (6) applications of colloidal crystals, ranging from cosmetics to sensing materials. We also describe space experiments on colloidal self-assembly in the International Space Station.This book will interest graduate school students in colloid and polymer science, pharmaceutics, soft matter physics, material sciences, and chemical engineering courses. It will also be a useful guide for individuals in academia and industry undertaking research in this field.
Colloidal Silica: Fundamentals and Applications (Surfactant Science #131)
by Horacio E. Bergna William O. RobertsIn spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well
Colloidal Suspension Rheology
by Jan Mewis Norman J. WagnerColloidal suspensions are encountered in a multitude of natural, biological and industrially relevant products and processes. Understanding what affects the flow behavior, or rheology, of colloid particles, and how these suspensions can be manipulated, is important for successful formulation of products such as paint, polymers, foods and pharmaceuticals. This book is the first devoted to the study of colloidal rheology in all its aspects. With material presented in an introductory manner, and complex mathematical derivations kept to a minimum, the reader will gain a strong grasp of the basic principles of colloid science and rheology. Beginning with purely hydrodynamic effects, the contributions of Brownian motion and interparticle forces are covered, before the reader is guided through specific problem areas, such as thixotropy and shear thickening; special classes of colloid suspensions are also treated. An essential guide for academic and industrial researchers, this book is also ideal for graduate course use.
Colloids and Interfaces in Life Sciences and Bionanotechnology
by Willem NordeColloidal systems occur everywhere-in soils, seawater, foodstuff, pharmaceuticals, paints, blood, biological cells, and microorganisms. Colloids and Interfaces in Life Sciences and Bionanotechnology, Second Edition, gives a concise treatment of physicochemical principles determining interrelated colloidal and interfacial phenomena. New in the
Colloids and the Depletion Interaction (Lecture Notes in Physics #1026)
by Remco Tuinier Henk N.W. Lekkerkerker Mark VisThis open access book provides a detailed exploration of the phase behaviour of, and interfacial properties in, complex colloidal mixtures (e.g., clay, milk, blood). Insights into colloids have been at the heart of many innovations in different industries. The big question underlying these innovations is how can colloidal systems be formulated and designed towards the desired properties? To do this, the forces between the colloidal particles need to be controlled. Adding depletants (non-adsorbing polymers or small colloids) is key to controlling the attractive interactions. Colloids and the Depletion Interaction provides the qualitative insights and quantitative tools to understand and predict such forces in colloidal dispersions. It offers a concise introduction to the history and fundamentals of the depletion interaction in, and phase behaviour of, colloidal dispersions.Why does adding polymers lead to attractive forces between colloidal particles? What determines the phase stability of multi-component colloidal systems? These include colloid—polymer mixtures, binary colloidal mixtures, and anisotropic particles such as clay platelets, cubes and rod-like viruses. Conceptual explanations are accompanied by experimental and computer simulation results throughout. Illustrations of depletion effects in colloid science, biology and technology demonstrate its wider significance. The concluding outlook provides the scope of challenges and possibilities in this exciting field of science. This second updated and enlarged edition contains 12 Chapters. It is an ideal book for advanced undergraduates and graduate students in physical chemistry, chemical engineering and soft matter physics. Besides providing a fundamental understanding of depletion interactions in colloidal mixtures, it gives background information on colloidal stability and phase behaviour in general. For experienced scientists and engineers working on mixtures of colloids and non-adsorbing (bio)polymers or colloidal particles, this book serves as a reference for understanding depletion interactions in systems of their specific interest.
Colloids and the Depletion Interaction (Lecture Notes in Physics #833)
by Remco Tuinier Henk N.W. LekkerkerkerColloids are submicron particles that are ubiquitous in nature (milk, clay, blood) and industrial products (paints, drilling fluids, food). In recent decades it has become clear that adding depletants such as polymers or small colloids to colloidal dispersions allows one to tune the interactions between the colloids and in this way control the stability, structure and rheological properties of colloidal dispersions. This book offers a concise introduction to the fundamentals of depletion effects and their influence on the phase behavior of colloidal dispersions. Throughout the book, conceptual explanations are accompanied by experimental and computer simulation results.