- Table View
- List View
Contributions to Higher Engineering Education
by Maria M. Nascimento Gustavo R. Alves Eva Virgínia Araújo MoraisThe book focuses on teaching knowledge and principles (Higher Education) regarding professional practice of engineering (life and lifelong learning). It covers recent developments in engineering education. This book comprises the select proceedings of the conference organised by the Portuguese Society for Engineering Education. This book goes beyond the examination of the economic, culture, and social factors, which influence the education of engineers in different higher education institutions, and encompasses critical thinking and problem solving, communication, collaboration and creativity and innovation. These are essential components of engineering education. The contents of this book are useful to researchers and professionals engaged in the re-engineering of engineering education.
Contributions to Networked and Event-Triggered Control of Linear Systems (Springer Theses)
by María Guinaldo LosadaThis book reports on a set of new techniques for resolving current issues in networked control systems. The main focus is on strategies for event-based control, for both centralized and decentralized architectures. The first part of the book addresses the problem of single-loop networked control systems and proposes an anticipative remote controller for dealing with delays and packet losses. The second part of the book proposes a distributed event-based control strategy for networked dynamical systems, which has been implemented in a test-bed of mobile robots, and provides readers with a thorough description of an interactive simulator used to validate the results. This thesis, examined at the Universidad Nacional de Educación a Distancia in 2013, received the award for best thesis in control engineering from the Control Engineering group of the Spanish Committee of Automatic Control in 2015.
Contributions to Partial Differential Equations and Applications (Computational Methods in Applied Sciences #47)
by B. N. Chetverushkin W. Fitzgibbon Y. A. Kuznetsov P. Neittaanmäki J. Periaux O. PironneauThis book treats Modelling of CFD problems, Numerical tools for PDE, and Scientific Computing and Systems of ODE for Epidemiology, topics that are closely related to the scientific activities and interests of Prof. William Fitzgibbon, Prof. Yuri Kuznetsov, and Prof. O. Pironneau, whose outstanding achievements are recognised in this volume. It contains 20 contributions from leading scientists in applied mathematics dealing with partial differential equations and their applications to engineering, ab-initio chemistry and life sciences. It includes the mathematical and numerical contributions to PDE for applications presented at the ECCOMAS thematic conference "Contributions to PDE for Applications" held at Laboratoire Jacques Louis Lions in Paris, France, August 31- September 1, 2015, and at the Department of Mathematics, University of Houston, Texas, USA, February 26-27, 2016. This event brought together specialists from universities and research institutions who are developing or applying numerical PDE or ODE methods with an emphasis on industrial and societal applications. This volume is of interest to researchers and practitioners as well as advanced students or engineers in applied and computational mathematics. All contributions are written at an advanced scientific level with no effort made by the editors to make this volume self-contained. It is assumed that the reader is a specialist already who knows the basis of this field of research and has the capability of understanding and appreciating the latest developments in this field.
Control Design of Multiagent Discrete-Time Systems (Studies in Systems, Decision and Control #387)
by MagdiSadek Mahmoud Bilal J. KarakiThis book describes an effective approach to the cooperative and coordinated control of multivehicle systems. This rigorous analytic approach guarantees the stability of coordinated and cooperating vehicles using distributed protocols and uses low-energy, event-triggered mechanisms for networked vehicle control. The text covers: design of a cooperative protocol to achieve consensus for multivehicle systems, allowing cooperation that is resistant to the effects of packet loss and/or adversarial attack; analysis and synthesis of an event-triggering mechanism for cooperative multivehicle systems over uncertain networks; and the problem of distributed leader-following consensus and methods for compelling multivehicle systems to reach consensus. Throughout the book, cooperation problems are transformed into stability problems. Lyapunov theory is used to guarantee cooperation among agents. The distributed approach is applied to triggering mechanisms, the cooperation process, and the impact of cyber-attacks. Discrete-time analysis shows how the event-based structure can be designed to match the performance of continuous-time counterparts. The book details applications and computer simulation with several practical examples. This book is of interest to a wide audience from the graduate student, through the academic researcher to the industrial practitioner, all of them sharing a common interest in the stability and security of multiagent systems.
Control Engineering: From The Basics To The Applications (Advanced Textbooks in Control and Signal Processing)
by Ruth Bars László Keviczky Jenő Hetthéssy Csilla BányászThis book offers fundamental information on the analysis and synthesis of continuous and sampled data control systems. It includes all the required preliminary materials (from mathematics, signals and systems) that are needed in order to understand control theory, so readers do not have to turn to other textbooks. Sampled data systems have recently gained increasing importance, as they provide the basis for the analysis and design of computer-controlled systems. Though the book mainly focuses on linear systems, input/output approaches and state space descriptions are also provided. Control structures such as feedback, feed forward, internal model control, state feedback control, and the Youla parameterization approach are discussed, while a closing section outlines advanced areas of control theory. Though the book also contains selected examples, a related exercise book provides Matlab/Simulink exercises for all topics discussed in the textbook, helping readers to understand the theory and apply it in order to solve control problems. Thanks to this combination, readers will gain a basic grasp of systems and control, and be able to analyze and design continuous and discrete control systems.
Control Methods for Electrical Machines
by René HussonThe type of control system used for electrical machines depends on the use (nature of the load, operating states, etc.) to which the machine will be put. The precise type of use determines the control laws which apply. Mechanics are also very important because they affect performance. Another factor of essential importance in industrial applications is operating safety. Finally, the problem of how to control a number of different machines, whose interactions and outputs must be coordinated, is addressed and solutions are presented. These and other issues are addressed here by a range of expert contributors, each of whom are specialists in their particular field. This book is primarily aimed at those involved in complex systems design, but engineers in a range of related fields such as electrical engineering, instrumentation and control, and industrial engineering, will also find this a useful source of information.
Control Strategies and Co-Design of Networked Control Systems: Considering Time Delay Effects (Modeling and Optimization in Science and Technologies #13)
by Héctor Benítez-Pérez Jorge L. Ortega-Arjona Paul E. Méndez-Monroy Ernesto Rubio-Acosta Oscar A. Esquivel-FloresThis book presents Networked Control System (NCS) as a particular kind of a real-time distributed system (RTDS), composed of a set of nodes, interconnected by a network, and able to develop a complete control process. It describes important parts of the control process such as sensor and actuator activities, which rely on a real-time operating system, and a real-time communication network. As the use of common bus network architecture introduces different forms of uncertainties between sensors, actuators, and controllers, several approaches such as reconfigurable systems have been developed to tackle this problem. Moreover, modeling NCS is a challenging procedure, since there are several non-linear situations, like local saturations, uncertain time delays, dead-zones, or local situations, it is necessary to deal with. The book describes a novel strategy for modelling and control based on a fuzzy control approach and codesign strategies.
Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions: Development, Testing and Verification (Lecture Notes in Control and Information Sciences #476)
by Harald Waschl Ilya Kolmanovsky Frank WillemsThis book describes different methods that are relevant to the development and testing of control algorithms for advanced driver assistance systems (ADAS) and automated driving functions (ADF). These control algorithms need to respond safely, reliably and optimally in varying operating conditions. Also, vehicles have to comply with safety and emission legislation. The text describes how such control algorithms can be developed, tested and verified for use in real-world driving situations. Owing to the complex interaction of vehicles with the environment and different traffic participants, an almost infinite number of possible scenarios and situations that need to be considered may exist. The book explains new methods to address this complexity, with reference to human interaction modelling, various theoretical approaches to the definition of real-world scenarios, and with practically-oriented examples and contributions, to ensure efficient development and testing of ADAS and ADF. Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions is a collection of articles by international experts in the field representing theoretical and application-based points of view. As such, the methods and examples demonstrated in the book will be a valuable source of information for academic and industrial researchers, as well as for automotive companies and suppliers.
Control Strategies for Robotic Exoskeletons to Assist Post-Stroke Hemiparetic Gait: An Assistive Approach Based on Technology Embodiment (Springer Theses)
by Julio Salvador Lora MillánThis book presents a new framework to improve the integration of exoskeletons in hemiparetic patients. The idea is to reduce potentially damaging compensatory strategies in the non-paretic leg, by ensuring a proper technology embodiment of the robotic exoskeletons in the nervous system. Upon reviewing control strategies for partial robotic exoskeletons applied to human gait, the book introduces robotic exoskeletons control algorithms, which were developed with the intention to promote gait symmetry by assisting the affected limb of hemiparetic patients according to the movement of the non-paretic leg. This new paradigm aimed at promoting the device's embodiment was expected to counteract the compensation mechanisms, which would become unnecessary and thus disappear. The control strategy relies on the gait phase estimation of the sound leg calculated using an adaptive frequency oscillator and was evaluated on post-stroke patients affected by hemiparetic gait, and the results are described in this book. All in all, this book offers a timely snapshot on control strategies for post-stroke robotic gait assistance. It also presents new findings concerning the role of robotic controllers in the embodiment of such devices, and their implications for new assistance paradigms for people with neurological gait disorders.
Control Synthesis for Semi-Markovian Switching Systems (Studies in Systems, Decision and Control #465)
by Wenhai Qi Guangdeng ZongThe book focuses on control synthesis for semi-Markovian switching systems. By using multiple semi-Markovian Lyapunov function approaches, a basic theoretical framework is formed toward the issue of control synthesis for semi-Markovian switching systems. This is achieved by providing an in-depth study on several major topics such as sliding mode control, finite-time control, quantized control, event-triggered control, synchronization, and fuzzy control for semi-Markovian switching systems. The comprehensive and systematic treatment of semi-Markovian switching systems is one of the major features of the book, which is particularly suitable for readers who are interested to learn control theory and engineering. By reading this book, the reader can obtain the most advanced analysis and design techniques for stochastic switching systems.
Control System Design: An Introduction to State-Space Methods (Dover Books on Electrical Engineering)
by Bernard FriedlandAddressed not only to students but also to professional engineers and scientists, this volume introduces state-space methods for direct applications to control system design, in addition to providing background for reading the periodical literature. Its presentation, therefore, is suitable both for those who require methods for achieving results and those more interested in using results than in proving them.Topics include feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; and shaping the dynamic response. Additional subjects encompass linear observers; compensator design by the separation principle; linear, quadratic optimum control; random processes; and Kalman filters.Concrete examples of how state-space methods can be used to advantage in several representative applications are woven into the fabric of the text and the homework problems. Many of the models are drawn from aerospace and inertial instrumentation; other examples are derived from chemical process control, maritime operations, robotics, and energy systems.
Control Systems Benchmarks (Advances in Industrial Control)
by José M. Maestre Carlos Ocampo-MartinezControl Systems Benchmarks helps control engineers, researchers, and students to evaluate and compare control system performance across a range of critical applications by offering a collection of real-world benchmarks. The book brings together challenges from diverse fields like power grids, robotics, automotive systems, and industrial processes, giving readers practical tools to test their control methods in realistic settings. Organized into two blocks, the book first tackles process control, covering dynamic and large-scale problems such as load-frequency control in power grids and wastewater-treatment-plant automation. The second block explores robotics and vehicles, focusing on areas like fault-tolerant control of quadrotors and lateral stability in electric vehicles. Each benchmark presents complex engineering challenges, allowing readers to experiment with various control approaches. This book is set apart by the consistent structure of its chapters, which enables readers to adapt benchmarks for their own systems easily. Each chapter includes: a brief overview of the benchmark, highlighting its significance and technical hurdles; a detailed problem description, including engineering goals and constraints; experimental setup, performance metrics, and data collection methods; downloadable materials and instructions for running simulations or accessing physical platforms; and a discussion of existing solutions, case studies, and open challenges to inspire further research. Whether you're a practitioner, an academic researcher, or a student eager to deepen your understanding of control systems, Control Systems Benchmarks offers practical insights and valuable resources to advance your work.
Control Systems: An Introduction
by Dr. D. SundararajanThis textbook is designed for an introductory, one-semester course in Control Systems for undergraduates and graduates in various engineering departments, such as electrical, mechanical, aerospace, and civil. It is written to be concise, clear, and yet comprehensive to make it easier for the students to learn this important subject with high mathematical complexity. The author emphasizes the physical simulation of systems, making it easier for readers to understand system behavior. The popular MATLAB® software package is used for programming and simulation. Every new concept is explained with figures and examples for a clear understanding. The simple and clear style of presentation, along with comprehensive coverage, enables students to obtain a solid foundation in the subject and for use in practical applications.
Control Theory Tutorial: Basic Concepts Illustrated by Software Examples (SpringerBriefs in Applied Sciences and Technology)
by Steven A. FrankThis open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches.
Control Theory and Inverse Problems: The 2023 Workshop in Monastir, Tunisia (Trends in Mathematics)
by Kaïs Ammari Islam Boussaada Chaker JammaziThis volume presents a timely overview of control theory and inverse problems, and highlights recent advances in these active research areas. The chapters are based on talks given at the spring school "Control Theory & Inverse Problems” held in Monastir, Tunisia in May 2023. In addition to providing a snapshot of these two areas, chapters also highlight breakthroughs on more specific topics, such as: Control of hyperbolic systems The Helffer-Nier Conjecture Rapid stabilization of the discretized Vlasov system Exponential stability of a delayed thermoelastic system Control Theory and Inverse Problems will be a valuable resource for both established researchers as well as more junior members of the community.
Control Theory in Rheology: An Introduction to Practical Applications
by Tommi BorgThis book bridges the gap between theoretical rheology and practical industry applications by introducing Control Theory (CT) and the linear Unified Model. This approach enables the modelling and analysis of various viscoelastic flows as well as polymer and macromolecular structures. In practical engineering, the design of machinery and equipment for polymers often relies on handbooks, respective textbooks, and numerous CAD-aided software tools based on empirical formulas. This book presents many useful viscoelastic constitutive equations for analysing and model shear and complex flows, relaxation modulus and spectrum, elongation, transient viscosity, and for computing the Molecular Weight Distribution (MWD) from viscoelastic measurements. The book adopts a counterintuitive approach, starting afresh and proceeding chronologically from steady-state viscosity and other flows relevant to practical engineering to the theoretical formulas of relaxation phenomena. It simplifies unnecessary complexity while still drawing on the well-documented motions of molecular chains. Furthermore, the book offers deeper insights into the background of power-law theories and the Cox-Merz rule, supplying new formulas for the relaxation modulus, spectrum, and various modules through the application of unified formulas. Professionals and scholars alike will find it a handy reference tool.
Control and Filtering for Semi-Markovian Jump Systems (Studies in Systems, Decision and Control #81)
by Peng Shi Ligang Wu Fanbiao LiThis book presents up-to-date research developments and novel methodologies on semi-Markovian jump systems (S-MJS). It presents solutions to a series of problems with new approaches for the control and filtering of S-MJS, including stability analysis, sliding mode control, dynamic output feedback control, robust filter design, and fault detection. A set of newly developed techniques such as piecewise analysis method, positively invariant set approach, event-triggered method, and cone complementary linearization approaches are presented. Control and Filtering for Semi-Markovian Jump Systems is a comprehensive reference for researcher and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduates and graduates in these areas. The readers will benefit from some new concepts, new models and new methodologies with practical significance in control engineering and signal processing.
Control and Filtering of Fuzzy Systems Under Communication Channels
by Xiao-Heng Chang Bo Wu Jun Xiong Zhi-Min LiThis book systematically studies the feedback control and filtering problems for nonlinear plants with limited communication channels based on T-S fuzzy models. By fully considering different network-induced phenomena, such as signal quantizations, time-delays, data packet dropouts, communication protocols, cyber attacks, and so on, some significant strategies are provided for various performance analysis and different controller/filter synthesis of fuzzy systems. The event-triggered mechanism is also mentioned to save the communication resource. Moreover, some results are extended to the fault detection and fault-tolerant control. The book provides some new methodologies in analysis and synthesis of fuzzy systems under communication channels, and can serve as a valuable reference material for researchers wishing to explore the area of control and filtering of fuzzy systems and networked systems.
Control and Filtering of Fuzzy Systems with Switched Parameters (Studies in Systems, Decision and Control #268)
by Peng Shi Zheng-Guang Wu Shanling DongThis book presents recent advances in control and filter design for Takagi-Sugeno (T-S) fuzzy systems with switched parameters. Thanks to its powerful ability in transforming complicated nonlinear systems into a set of linear subsystems, the T-S fuzzy model has received considerable attention from those the field of control science and engineering. Typical applications of T-S fuzzy systems include communication networks, and mechanical and power electronics systems. Practical systems often experience abrupt variations in their parameters or structures due to outside disturbances or component failures, and random switching mechanisms have been used to model these stochastic changes, such as the Markov jump principle. There are three general types of controller/filter for fuzzy Markov jump systems: mode-independent, mode-dependent and asynchronous. Mode-independence does not focus on whether modes are accessible and ignores partially useful mode information, which results in some conservatism. The mode-dependent design approach relies on timely, complete and correct information regarding the mode of the studied plant. Factors like component failures and data dropouts often make it difficult to obtain exact mode messages, which further make the mode-dependent controllers/filters less useful. Recently, to overcome these issues, researchers have focused on asynchronous techniques. Asynchronous modes are accessed by observing the original systems based on certain probabilities. The book investigates the problems associated with controller/filter design for all three types. It also considers various networked constraints, such as data dropouts and time delays, and analyzes the performances of the systems based on Lyapunov function and matrix inequality techniques, including the stochastic stability, dissipativity, and $H_\infty$. The book not only shows how these approaches solve the control and filtering problems effectively, but also offers potential meaningful research directions and ideas. Covering a variety of fields, including continuous-time and discrete-time Markov processes, fuzzy systems, robust control, and filter design problems, the book is primarily intended for researchers in system and control theory, and is also a valuable reference resource for graduate and undergraduate students. Further, it provides cases of fuzzy control problems that are of interest to scientists, engineers and researchers in the field of intelligent control. Lastly it is useful for advanced courses focusing on fuzzy modeling, analysis, and control.
Control and Inverse Problems: The 2022 Spring Workshop in Monastir, Tunisia (Trends in Mathematics)
by Kaïs Ammari Chaker Jammazi Faouzi TrikiThis volume presents a timely overview of control theory and inverse problems, and highlights recent advances in these active research areas. The chapters are based on talks given at the spring school "Control & Inverse Problems” held in Monastir, Tunisia in May 2022. In addition to providing a snapshot of these two areas, chapters also highlight breakthroughs on more specific topics, such as: Controllability of dynamical systems Information transfer in multiplier equations Nonparametric instrumental regression Control of chained systems The damped wave equation Control and Inverse Problems will be a valuable resource for both established researchers as well as more junior members of the community.
Control and Monitoring of Chemical Batch Reactors (Advances in Industrial Control)
by Vincenzo Tufano Francesco Pierri Fabrizio Caccavale Mario IamarinoThe Chemical Batch Reactor is aimed at tackling the above problems from a blending of academic and industrial perspectives. Advanced solutions (i.e., those based on recent research results) to the four fundamental problems of modeling, identification, control and fault diagnosis for batch processes are developed in detail in four distinct chapters. In each chapter, a general overview of foundational concepts is also given, together with a review of recent and classical literature on the various subjects. To provide a unitary treatment of the different topics and give a firm link to the underlying practical applications, a single case study is developed as the book progresses; a batch process of industrial interest, i.e., the phenol-formaldehyde reaction for the production of phenolic resins, is adopted to test the various techniques developed. In this way, a roadmap of the solutions to fundamental problems, ranging from the early stages of the production process to the complete design of control and diagnosis systems, is provided for both industrial practitioners and academic researchers.
Control and Safety Analysis of Intensified Chemical Processes
by Gade Pandu Rangaiah Dipesh Shikchand PatleControl and Safety Analysis of Intensified Chemical Processes Resource on the control and safety analysis of intensified chemical processes, ranging from general methods to specific applications Control and Safety Analysis of Intensified Chemical Processes covers the basic principles of and recent developments in control and safety analysis of intensified chemical processes, ranging from dynamic simulations and safety analysis to the design and control of important processes. The text discusses general methods and tools such as dynamic simulation, control and safety analysis as well as design aspects and analysis of important applications in order to provide scientists and engineers with an understanding of the design, control and safety considerations involved in intensified chemical processes. Sample topics covered in Control and Safety Analysis of Intensified Chemical Processes include: Simulation and optimization methods, common programs and simulators for simulation and optimization, and interfacing of simulators and optimizers Programs/simulators for dynamic simulation and control, tuning of controllers, and popular criteria for control assessment Control of a hybrid reactive-extractive distillation systems for ternary azeotropic mixtures, reactive distillation in recycle systems, and middle vessel batch distillation with vapor recompression Safety analysis of intensified processes (e.g. extractive distillation, dividing wall column, dividing wall column with mechanical vapor recompression, and algal biodiesel process) A comprehensive resource on the subject, Control and Safety Analysis of Intensified Chemical Processes is a highly valuable reference for researchers, students and practitioners interested in process intensification and their applications. The text can be adopted by instructors for use in advanced courses on process control and safety.
Control and System Theory of Discrete-Time Stochastic Systems (Communications and Control Engineering)
by Jan H. van SchuppenThis book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows.The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.
Control for Aluminum Production and Other Processing Industries
by Mark P. Taylor John J. Chen Brent Richmond YoungAn uncomfortable observation in the Shift Logs and Process Control records of most aluminum smelting plants is that process control failures, large and small, happen every day. Although only a small fraction of these failures give rise to catastrophic events, the difference between a disaster we read about and a failure which, although expensive, h
Control in Bioprocessing: Modeling, Estimation and the Use of Soft Sensors
by Pablo A. López Pérez Ricardo Aguilar López Ricardo FematCloses the gap between bioscience and mathematics-based process engineering This book presents the most commonly employed approaches in the control of bioprocesses. It discusses the role that control theory plays in understanding the mechanisms of cellular and metabolic processes, and presents key results in various fields such as dynamic modeling, dynamic properties of bioprocess models, software sensors designed for the online estimation of parameters and state variables, and control and supervision of bioprocesses Control in Bioengineering and Bioprocessing: Modeling, Estimation and the Use of Sensors is divided into three sections. Part I, Mathematical preliminaries and overview of the control and monitoring of bioprocess, provides a general overview of the control and monitoring of bioprocesses, and introduces the mathematical framework necessary for the analysis and characterization of bioprocess dynamics. Part II, Observability and control concepts, presents the observability concepts which form the basis of design online estimation algorithms (software sensor) for bioprocesses, and reviews controllability of these concepts, including automatic feedback control systems. Part III, Software sensors and observer-based control schemes for bioprocesses, features six application cases including dynamic behavior of 3-dimensional continuous bioreactors; observability analysis applied to 2D and 3D bioreactors with inhibitory and non-inhibitory models; and regulation of a continuously stirred bioreactor via modeling error compensation. Applicable across all areas of bioprocess engineering, including food and beverages, biofuels and renewable energy, pharmaceuticals and nutraceuticals, fermentation systems, product separation technologies, wastewater and solid-waste treatment technology, and bioremediation Provides a clear explanation of the mass-balance–based mathematical modelling of bioprocesses and the main tools for its dynamic analysis Offers industry-based applications on: myco-diesel for implementing "quality" of observability; developing a virtual sensor based on the Just-In-Time Model to monitor biological control systems; and virtual sensor design for state estimation in a photocatalytic bioreactor for hydrogen production Control in Bioengineering and Bioprocessing is intended as a foundational text for graduate level students in bioengineering, as well as a reference text for researchers, engineers, and other practitioners interested in the field of estimation and control of bioprocesses.