- Table View
- List View
Data Analysis and Statistics for Geography, Environmental Science, and Engineering
by Miguel F. AcevedoProviding a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain
Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning
by Heinz Pitsch Antonio AttiliThis book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.
Data Analysis for Research Designs: Analysis of Variance and Multiple Regression/Correlation Approaches
by Geoffrey Keppel Sheldon ZedeckData Analysis for Research Designs covers the analytical techniques for the analysis of variance (ANOVA) and multiple regression/correlation (MRC), emphasizing single-degree-of-freedom comparisons so that students focus on clear research planning. This text is designed for advanced undergraduates and graduate students of the behavioral and social sciences who have an understanding of algebra and statistics.
Data Analysis for the Life Sciences with R
by Rafael A. Irizarry Michael I. LoveThis book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Data Analysis in High Energy Physics
by Thomas Schörner-Sadenius Kevin Kröninger Olaf Behnke Grégory SchottThis practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links.* Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Data Analysis in Vegetation Ecology
by Otto WildiThe first edition of Data Analysis in Vegetation Ecology provided an accessible and thorough resource for evaluating plant ecology data, based on the author's extensive experience of research and analysis in this field. Now, the Second Edition expands on this by not only describing how to analyse data, but also enabling readers to follow the step-by-step case studies themselves using the freely available statistical package R. The addition of R in this new edition has allowed coverage of additional methods for classification and ordination, and also logistic regression, GLMs, GAMs, regression trees as well as multinomial regression to simulate vegetation types. A package of statistical functions, specifically written for the book, covers topics not found elsewhere, such as analysis and plot routines for handling synoptic tables. All data sets presented in the book are now also part of the R package 'dave', which is freely available online at the R Archive webpage. The book and data analysis tools combined provide a complete and comprehensive guide to carrying out data analysis students, researchers and practitioners in vegetation science and plant ecology.Summary:A completely revised and updated edition of this popular introduction to data analysis in vegetation ecologyNow includes practical examples using the freely available statistical package 'R'Written by a world renowned expert in the fieldComplex concepts and operations are explained using clear illustrations and case studies relating to real world phenomenaHighlights both the potential and limitations of the methods used, and the final interpretationsGives suggestions on the use of the most widely used statistical software in vegetation ecology and how to start analysing dataPraise for the first edition: "This book will be a valuable addition to the shelves of early postgraduate candidates and postdoctoral researchers. Through the excellent background material and use of real world examples, Wildi has taken the fear out of trying to understand these much needed data analysis techniques in vegetation ecology." Austral Ecology
Data Analysis in Vegetation Ecology
by Otto WildiThe 3rd edition of this popular textbook introduces the reader to the investigation of vegetation systems with an emphasis on data analysis. The book succinctly illustrates the various paths leading to high quality data suitable for pattern recognition, pattern testing, static and dynamic modelling and model testing including spatial and temporal aspects of ecosystems. Step-by-step introductions using small examples lead to more demanding approaches illustrated by real world examples aimed at explaining interpretations. All data sets and examples described in the book are available online and are written using the freely available statistical package R. This book will be of particular value to beginning graduate students and postdoctoral researchers of vegetation ecology, ecological data analysis, and ecological modelling, and experienced researchers needing a guide to new methods. A completely revised and updated edition of this popular introduction to data analysis in vegetation ecology. Includes practical step-by-step examples using the freely available statistical package R. Complex concepts and operations are explained using clear illustrations and case studies relating to real world phenomena. Emphasizes method selection rather than just giving a set of recipes.
Data Analysis in Vegetation Ecology, 3rd Edition
by Otto WildiThe third edition of this popular textbook introduces the reader to the investigation of vegetation systems with an emphasis on data analysis. The book succinctly illustrates the various paths leading to high quality data suitable for pattern recognition, pattern testing, static and dynamic modeling, and model testing, including spatial and temporal aspects of ecosystems. Step-by-step introductions using small examples lead to more demanding approaches illustrated by real world examples aimed at explaining interpretations. All data sets and examples described in the book are available online and are written using the freely available statistical package R. This book will be of particular value to beginning graduate students and postdoctoral researchers of vegetation ecology, ecological data analysis, and ecological modeling as well as to experienced researchers needing a guide to new methods. Features: - Completely revised and updated - Includes practical step-by-step examples using the freely available statistical package R - Complex concepts and operations are explained using clear illustrations and case studies relating to real world phenomena - Emphasizes method selection rather than just giving a set of recipes.
Data Analytics and Learning: Proceedings of Dal 2018 (Lecture Notes in Networks and Systems #43)
by D. S. Guru P. Nagabhushan B. H. Shekar Y. H. Sharath KumarThis paper describes a method to localize and recognize seven-segment displays on digital energy meters. Color edge detection is first performed on a camera-captured image of the device which is then followed by a run-length technique to detect horizontal and vertical lines. The region of interest circumscribing the LCD panel is determined based on the attributes of intersecting horizontal and vertical lines. The extracted display region is preprocessed using the morphological black-hat operation to enhance the text strokes. Adaptive thresholding is then performed and the digits are segmented based on stroke features. Finally, the segmented digits are recognized using a support vector machine classifier trained on a set of syntactic rules defined for the seven-segment font. The proposed method can handle images exhibiting uneven illumination, the presence of shadows, poor contrast, and blur, and yields a recognition accuracy of 97% on a dataset of 175 images of digital energy meters captured using a mobile camera.
Data Analytics for Drilling Engineering: Theory, Algorithms, Experiments, Software (Information Fusion and Data Science)
by Qilong XueThis book presents the signal processing and data mining challenges encountered in drilling engineering, and describes the methods used to overcome them. In drilling engineering, many signal processing technologies are required to solve practical problems, such as downhole information transmission, spatial attitude of drillstring, drillstring dynamics, seismic activity while drilling, among others. This title attempts to bridge the gap between the signal processing and data mining and oil and gas drilling engineering communities. There is an urgent need to summarize signal processing and data mining issues in drilling engineering so that practitioners in these fields can understand each other in order to enhance oil and gas drilling functions. In summary, this book shows the importance of signal processing and data mining to researchers and professional drilling engineers and open up a new area of application for signal processing and data mining scientists.
Data Analytics for Process Engineers: Prediction, Control and Optimization (Synthesis Lectures on Mechanical Engineering)
by Daniela Galatro Stephen DaweThis book provides an industry-oriented data analytics approach for process engineers, including data acquisition methods and sources, exploratory data analysis and sensitivity analysis, data-based modelling for prediction, data-based modelling for monitoring and control, and data-based optimization of processes. While many of the current data analytics books target business-related problems, the rationale for this book is a specific need to understand and select applicable data analytics approaches pragmatically to analyze process engineering–related problems; this tailored solution for engineers gets amalgamated with governing equations, and in several cases, with the physical understanding of the phenomenon being analyzed. We also consider this book strategically conceived to help map Education 4.0 with Industry 4.0 since it can support undergraduate and graduate students to gain valuable and applicable data analytics stills that can be further used in their workplace. Moreover, it can be used as a reference book for professionals, a quick reference to data analytics tools that can facilitate and/or optimize their process engineering tasks.
Data Analytics for Protein Crystallization
by Marc L. Pusey Ramazan Savaş AygünThis unique text/reference presents an overview of the computational aspects of protein crystallization, describing how to build robotic high-throughput and crystallization analysis systems. The coverage encompasses the complete data analysis cycle, including the set-up of screens by analyzing prior crystallization trials, the classification of crystallization trial images by effective feature extraction, the analysis of crystal growth in time series images, the segmentation of crystal regions in images, the application of focal stacking methods for crystallization images, and the visualization of trials.Topics and features: describes the fundamentals of protein crystallization, and the scoring and categorization of crystallization image trials; introduces a selection of computational methods for protein crystallization screening, and the hardware and software architecture for a basic high-throughput system; presents an overview of the image features used in protein crystallization classification, and a spatio-temporal analysis of protein crystal growth; examines focal stacking techniques to avoid blurred crystallization images, and different thresholding methods for binarization or segmentation; discusses visualization methods and software for protein crystallization analysis, and reviews alternative methods to X-ray diffraction for obtaining structural information; provides an overview of the current challenges and potential future trends in protein crystallization.This interdisciplinary work serves as an essential reference on the computational and data analytics components of protein crystallization for the structural biology community, in addition to computer scientists wishing to enter the field of protein crystallization.
Data Analytics for Renewable Energy Integration. Technologies, Systems and Society: 6th ECML PKDD Workshop, DARE 2018, Dublin, Ireland, September 10, 2018, Revised Selected Papers (Lecture Notes in Computer Science #11325)
by Wei Lee Woon Zeyar Aung Stuart Madnick Alejandro Catalina FeliúThis book constitutes the revised selected papers from the 6th ECML PKDD Workshop on Data Analytics for Renewable Energy Integration, DARE 2018, held in Dublin, Ireland, in September 2018. The 9 papers presented in this volume were carefully reviewed and selected for inclusion in this book and handle topics such as time series forecasting, the detection of faults, cyber security, smart grid and smart cities, technology integration, demand response, and many others.
Data Analytics for Supply Chain Networks (Greening of Industry Networks Studies #11)
by Niamat Ullah Ibne HossainThe objective of the book is to adopt the application of data analytics to enhance the sustainability and resilience of the green supply chain networks. To demonstrate the applicability and usefulness of the method, the book adopts different data analytic models and approaches against the backdrop of case studies. In summary, this book attempts to address the question of methods, tools, and techniques that can be used to create resilient, anti-fragile, reliable, and invulnerable green supply chain networks.
Data Analytics: Proceedings Of 4th Conference On Sustainable Urban Mobility (csum2018), 24 - 25 May, Skiathos Island, Greece (Advances In Intelligent Systems and Computing #879)
by Eftihia G. Nathanail Ioannis D. KarakikesThis book aims at showing how big data sources and data analytics can play an important role in sustainable mobility. It is especially intended to provide academicians, researchers, practitioners and decision makers with a snapshot of methods that can be effectively used to improve urban mobility. The different chapters, which report on contributions presented at the 4th Conference on Sustainable Urban Mobility, held on May 24-25, 2018, in Skiathos Island, Greece, cover different thematic areas, such as social networks and traveler behavior, applications of big data technologies in transportation and analytics, transport infrastructure and traffic management, transportation modeling, vehicle emissions and environmental impacts, public transport and demand responsive systems, intermodal interchanges, smart city logistics systems, data security and associated legal aspects. They show in particular how to apply big data in improving urban mobility, discuss important challenges in developing and implementing analytics methods and provide the reader with an up-to-date review of the most representative research on data management techniques for enabling sustainable urban mobility
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)
by Liang Xu Seon Ki ParkThis book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including adaptive observations, sensitivity analysis, parameter estimation and AI applications. The book is useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Data Baby: My Life in a Psychological Experiment
by Susannah BreslinA Belletrist Book Pick for December 2023Lab Girl meets Brain on Fire in this provocative and poignant memoir delving into a woman's formative experiences as a veritable "lab rat" in a lifelong psychological study, and her pursuit to reclaim autonomy and her identity as a adult. What if your parents turn you into a human lab rat when you&’re a child? Will that change the story of your life? Will that change who you are? When Susannah Breslin is a toddler, her parents enroll her in an exclusive laboratory preschool at the University of California, Berkeley, where she becomes one of over a hundred children who are research subjects in an unprecedented thirty-year study of personality development that predicts who she and her cohort will grow up to be. Decades later, trapped in what she feels is an abusive marriage and battling breast cancer, she starts to wonder how growing up under a microscope shaped her identity and life choices. Already a successful journalist, she makes her own curious history the subject of her next investigation. From experiment rooms with one-way mirrors, to children&’s puzzles with no solutions, to condemned basement laboratories, her life-changing journey uncovers the long-buried secrets hidden behind the renowned study. The question at the gnarled heart of her quest: Did the study know her better than she knew herself? At once bravely honest and sharply witty, Data Baby is a compelling and provocative account of a woman&’s quest to find her true self, and an unblinking exploration of why we turn out as we do. Few people in all of history have been studied from such a young age and for as long as this author, but the message of her book is universal. In an era when so many of us are looking to technology to tell us who to be, it&’s up to us to discover who we actually are.
Data Cartels: The Companies That Control and Monopolize Our Information
by Sarah LamdanIn our digital world, data is power. Information hoarding businesses reign supreme, using intimidation, aggression, and force to maintain influence and control. Sarah Lamdan brings us into the unregulated underworld of these "data cartels", demonstrating how the entities mining, commodifying, and selling our data and informational resources perpetuate social inequalities and threaten the democratic sharing of knowledge. Just a few companies dominate most of our critical informational resources. Often self-identifying as "data analytics" or "business solutions" operations, they supply the digital lifeblood that flows through the circulatory system of the internet. With their control over data, they can prevent the free flow of information, masterfully exploiting outdated information and privacy laws and curating online information in a way that amplifies digital racism and targets marginalized communities. They can also distribute private information to predatory entities. Alarmingly, everything they're doing is perfectly legal. In this book, Lamdan contends that privatization and tech exceptionalism have prevented us from creating effective legal regulation. This in turn has allowed oversized information oligopolies to coalesce. In addition to specific legal and market-based solutions, Lamdan calls for treating information like a public good and creating digital infrastructure that supports our democratic ideals.
Data Driven Approaches on Medical Imaging
by Bin Zheng Stefan Andrei Md Kamruzzaman Sarker Kishor Datta GuptaThis book deals with the recent advancements in computer vision techniques such as active learning, few-shot learning, zero shot learning, explainable and interpretable ML, online learning, AutoML etc. and their applications in medical domain. Moreover, the key challenges which affect the design, development, and performance of medical imaging systems are addressed. In addition, the state-of-the-art medical imaging methodologies for efficient, interpretable, explainable, and practical implementation of computer imaging techniques are discussed. At present, there are no textbook resources that address the medical imaging technologies. There are ongoing and novel research outcomes which would be useful for the development of novel medical imaging technologies/processes/equipment which can improve the current state of the art.The book particularly focuses on the use of data driven new technologies on medical imaging vision such as Active learning, Online learning, few shot learning, AutoML, segmentation etc.
Data Driven Energy Centered Maintenance (Energy Management)
by Marvin T. Howell Fadi AlshakhshirOver recent years, many new technologies have been introduced to drive the digital transformation in the building maintenance industry. The current trend in digital evolution involves data-driven decision making which opens new opportunities for an energy centered maintenance model. Artificial Intelligence and Machine Learning are helping the maintenance team to get to the next level of maintenance intelligence to provide real-time early warning of abnormal equipment performance. This edition follows the same methodology as the First. It provides detailed descriptions of the latest technologies associated with Artificial Intelligence and Machine Learning which enable data-driven decision-making processes about the equipment’s operation and maintenance. Technical topics discussed in the book include: Different Maintenance Types and The Need for Energy Centered Maintenance The Centered Maintenance Model Energy Centered Maintenance Process Measures of Equipment and Maintenance Efficiency and Effectiveness Data-Driven Energy Centered Maintenance Model: Digitally Enabled Energy Centered Maintenance Tasks Artificial Intelligence and Machine Learning in Energy Centered Maintenance Model Capabilities and Analytics Rules Building Management System Schematics The book contains a detailed description of the digital transformation process of most of the maintenance inspection tasks as they move away from being manually triggered. The book is aimed at building operators as well as those building automation companies who are working continuously to digitalize building operation and maintenance procedures. The benefits are reductions in the equipment failure rate, improvements in equipment reliability, increases in equipment efficiency and extended equipment lifespan.
Data Driven Guide to the Analysis of X-ray Photoelectron Spectra using RxpsG
by Giorgio SperanzaThis book provides a theoretical background to X-ray photoelectron spectroscopy (XPS) and a practical guide to the analysis of the XPS spectra using the RxpsG software, a powerful tool for XPS analysis. Although there are several publications and books illustrating the theory behind XPS and the origin of the spectral feature, this book provides an additional practical introduction to the use of RxpsG. It illustrates how to use the RxpsG software to perform specific key operations, with figures and examples which readers can reproduce themselves. The book contains a list of theoretical sections explaining the appearance of the various spectral features (core‑lines, Auger components, valence bands, loss features, etc.). They are accompanied by practical steps, so readers can learn how to analyze specific spectral features using the various functions of the RxpsG software. This book is a useful guide for researchers in physics, chemistry, and material science who are looking to begin using XPS, in addition to experienced researchers who want to learn how to use RxpsG. In the digital format, the spectral data and step-by-step indications are provided to reproduce the examples given in the textbook. RxpsG is a free software for the spectral analysis. Readers can find the installation information and download the package from https://github.com/GSperanza/ website. RxpsG was developed mainly by Giorgio Speranza with the help of his colleague dr. Roberto Canteri working at Fondazione Bruno Kessler. Key Features: Simplifies the use of RxpsG, how it works, and its applications. Demonstrates RxpsG using a reproduction of the graphical interface of RxpsG, showing the steps needed to perform a specific task and the effect on the XPS spectra. Accessible to readers without any prior experience using the RxpsG software. Giorgio Speranza is Senior Researcher at Fondazione Bruno Kessler – Trento Italy, Associate Member of the Italian National Council of Research, and Associate Member of the Department of Industrial Engineering at the University of Trento, Italy.
Data Driven Mathematical Modeling in Agriculture: Tools and Technologies (River Publishers Series in Mathematical, Statistical and Computational Modelling for Engineering)
by Sandip Roy Sabyasachi Pramanik Rajesh BoseThe research in this book looks at the likelihood and level of use of implemented technological components with regard to the adoption of different precision agricultural technologies. To identify the variables affecting farmers' choices to embrace more precise technology, zero-inflated Poisson and negative binomial count data regression models are utilized. Outcomes from the count data analysis of a random sample of various farm operators show that various aspects, including farm dimension, farmer demographics, soil texture, urban impacts, farmer position of liabilities, and position of the farm in a state, were significantly associated with the approval severity and likelihood of precision farming technologies.Technical topics discussed in the book include: Precision agriculture Machine learning Wireless sensor networks IoT Deep learning
Data Driven Strategies: Theory and Applications
by Ricardo A. Ramirez-Mendoza Ruben Morales-Menendez Wang JianhongA key challenge in science and engineering is to provide a quantitative description of the systems under investigation, leveraging the noisy data collected. Such a description may be a complete mathematical model or a mechanism to return controllers corresponding to new, unseen inputs. Recent advances in the theories are described in detail, along with their applications in engineering. The book aims to develop model-free system analysis and control strategies, i.e., data-driven control from theoretical analysis and engineering applications based only on measured data. The study aims to develop system identification, and combination in advanced control theory, i.e., data-driven control strategy as system and controller are generated from measured data directly. The book reviews the development of system identification and its combination in advanced control theory, i.e., data-driven control strategy, as they all depend on measured data. Firstly, data-driven identification is developed for the closed-loop, nonlinear system and model validation, i.e., obtaining model descriptions from measured data. Secondly, the data-driven idea is combined with some control strategies to be considered data-driven control strategies, such as data-driven model predictive control, data-driven iterative tuning control, and data-driven subspace predictive control. Thirdly data-driven identification and data-driven control strategies are applied to interested engineering. In this context, the book provides algorithms to perform state estimation of dynamical systems from noisy data and some convex optimization algorithms through identification and control problems.
Data Governance: A Guide
by Dimitrios SargiotisThis book is a comprehensive resource designed to demystify the complex world of data governance for professionals across various sectors. This guide provides in-depth insights, methodologies, and best practices to help organizations manage their data effectively and securely. It covers essential topics such as data quality, privacy, security, and management ensuring that readers gain a holistic understanding of how to establish and maintain a robust data governance framework. Through a blend of theoretical knowledge and practical applications, this book addresses the challenges and benefits of data governance, equipping readers with the tools needed to navigate the evolving data landscape. In addition to foundational principles, this book explores real-world case studies that illustrate the tangible benefits and common pitfalls of implementing data governance. Emerging trends and technologies, including artificial intelligence, machine learning, and blockchain are also examined to prepare readers for future developments in the field. Whether you are a seasoned data management professional or new to the discipline, this book serves as an invaluable resource for mastering the intricacies of data governance and leveraging data as a strategic asset for organizational success. This resourceful guide targets data management professionals, IT managers, Compliance officers, Data Stewards, Data Owners Data Governance Managers and more. Business leaders, business executives academic researchers, students focused on computer science in data-related fields will also find this book a useful resource.
Data Journeys in the Sciences
by Sabina Leonelli Niccolò TempiniThis groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research.