Browse Results

Showing 21,476 through 21,500 of 73,545 results

Energy in Perspective

by Mark Cronshaw

This textbook provides broad coverage of energy supply and use. It discusses how energy is produced, transformed, delivered to end users, and consumed. The author discusses all of this at an undergraduate level, accessible to students of varying backgrounds. High-level and human-scale perspectives are included. As a high-level example, the book discusses the shares of global primary energy that are provided by oil, gas, coal, hydroelectricity, and renewables, as well as trends in energy consumption and supply over time. Human-scale examples will resonate with readers’ every day experiences. The link between economic development and energy consumption is presented, which facilitates understanding of how global energy consumption growth is inevitable as economic development occurs. Coverage includes separate chapters on the oil, natural gas, coal, and electricity sectors. Each of these provides high-level descriptions of the technology involved in the production of that type of energy as well as the processing and transportation that occurs to bring the energy to end users. The book discusses the technological implications of energy transitions such as increased use of renewables or changes in the use of nuclear energy using Germany and Japan as examples. It closes with a discussion of future energy use.

Energy In World History

by Vaclav Smil

Every human activity entails the conversion of energy. Changes in the fundamental sources of energy, and in the use of energy sources, are a basic dimension of the evolution of society. Our appreciation of the significance of these processes is essential to a fuller understanding of world history. Vaclav Smil offers a comprehensive look at the role

Energy Independence: The Individual Pursuit of Energy Freedom (River Publishers Series in Energy Sustainability and Efficiency)

by Alden M Hathaway, II Tripp Hathaway

The 20th century is known to the entire world as a century of American greatness. Innovations in energy drove that American superiority; innovations such as oil pipelines, petroleum-based fuel, the light bulb, electricity, and the power grid. However, our legacy energy economy leaves us wanting in the 21st century. Centralized vulnerability, wasted generation capacity, dependence on foreign fuel, and climate change are financed by every one of us at the pump and in our monthly utility bill. However, "Energy Independence" is not about what is wrong with our current energy economy; rather it describes a bright future that is waiting to be unlocked. It presents a plan where the average homeowner can not only achieve energy freedom for their household, but usher in the new energy economy.

Energy Intermittency

by Bent Sorensen

The first book to consider intermittency as a key point of an energy system, Energy Intermittency describes different levels of variability for traditional and renewable energy sources, presenting detailed solutions for handling energy intermittency through trade, collaboration, demand management, and active energy storage. Addressing energy supply intermittency systematically, this practical text: Analyzes typical time-distributions and intervals between episodes of demand-supply mismatch and explores their dependence on system layouts and energy source characteristics Simulates scenarios regarding resource time-flow, energy conversion devices, and demand structure to assist in evaluating the technical viability of the proposed solutions Discusses the conditions for establishing such systems in terms of economic requirements and regulatory measures In one concise and convenient volume, Energy Intermittency provides a comprehensive overview of all the causes and remedies of energy supply intermittency.

Energy Investments: An Adaptive Approach to Profiting from Uncertainties

by Ricardo G. Barcelona

This book examines what lies behind the uncertainties surrounding the fuel and power markets. Exploring the role of renewables and how they potentially disrupt or create opportunities, it challenges widely accepted wisdoms in investment. The author asks questions such as: Are “business as usual” strategies that favour fossil fuels the best route to future prosperity? What prospects do firms face when their competitors diversify into renewables? Why do generous subsidies to renewables often fail to achieve wide-scale deployment? Illustrating how real options and option games reasoning yield vastly different insights from those gained from NPVs, Energy Investments offers case studies and simulations to demonstrate how firms can benefit from the methods it showcases.

Energy Islands: Metaphors of Power, Extractivism, and Justice in Puerto Rico (Environmental Communication, Power, and Culture #1)

by Catalina M de Onís

Energy Islands provides an urgent and nuanced portrait of collective action that resists racial capitalism, colonialism, and climate disruption. Weaving together historical and ethnographic research, this story challenges the master narratives of Puerto Rico as a tourist destination and site of "natural" disasters to demonstrate how fossil fuel economies are inextricably entwined with colonial practices and how local community groups in Puerto Rico have struggled against energy coloniality to mobilize and transform power from the ground up.Catalina M. de Onís documents how these groups work to decenter continental contexts and deconstruct damaging hierarchies that devalue and exploit rural coastal communities. She highlights and collaborates with individuals who refuse the cruel logics of empire by imagining and implementing energy justice and other interconnected radical power transformations. Diving deeply into energy, islands, and power, this book engages various metaphors for alternative world-making.

Energy Issues and Transition to a Low Carbon Economy: Insights from Mexico (Strategies for Sustainability)

by Francisco J. Lozano Alberto Mendoza Arturo Molina

Without energy, there is no well-functioning economy, besides facing social risks. This book provides a systemic approach to energy in Mexico and its relations to the USA arising from the energy reform of the former. It covers the transition from fossil fuels to a low-carbon economy, relying heavily on renewable sources and mitigating climate change risks. Several human knowledge disciplines and topics are covered in the book, including public policy, economics, transboundary issues, electricity and thermal energy, residual biomass use, distributed energy systems and its management, and decision-making tools. An analysis is considered regarding energy issues interaction in the Mexican-USA border, which differ in both countries from pricing and policy, and the work and research that has been developed for transboundary energy trade.

Energy Justice: A Local Content Analytical Framework for Sub-Saharan Africa (Energy, Climate and the Environment)

by Rukonge Sospeter Muhongo

This book explores local content policies and their role in natural resource management within the realm of energy justice. Based on several country case studies it discusses the role of regional integration for such policies in Sub-Saharan Africa. Energy justice has been widely applied across different aspects of development, but here the principles of justice are specifically integrated with the management and implementation of oil and gas projects. Such an analysis offers novel means of implementing policies in local regions, moving away from a one-size fits all approach that leads to the ineffective transplantation of policies from developed economies to developing Sub-Saharan economies. The book argues that with a regional approach, Sub-Saharan Africa can leverage natural resources, industrial parks, supplier clusters, regional financing mechanisms and regional training facilities which would drive down the costs of production, increase efficiency and integrate the local Sub-Saharan population into the oil and gas industry. This would result in the benefits as well as the environmental concerns and responsibilities intrinsic to these industries, being spread more equally amongst local and none local stakeholders. This book will be a valuable resource for scholars and students as well as policy makers and practitioners in the areas of extractive industry-related disciplines energy governance, and economic development in Africa.

Energy Justice Across Borders

by Gunter Bombaerts Kirsten Jenkins Yekeen A. Sanusi Wang Guoyu

This book is open access under a CC BY 4.0 license.We must find new and innovative ways of conceptualizing transboundary energy issues, of embedding concerns of ethics or justice into energy policy, and of operationalizing response to them. This book stems from the emergent gap; the need for comparative approaches to energy justice, and for those that consider ethical traditions that go beyond the classical Western approach. This edited volume unites the fields of energy justice and comparative philosophy to provide an overarching global perspective and approach to applying energy ethics. We contribute to this purpose in four sections: setting the scene, practice, applying theory to practice, and theoretical approaches. Through the chapters featured in the volume, we position the book as one that contributes to energy justice scholarship across borders of nations, borders of ways of thinking and borders of disciplines. The outcome will be of interest to undergraduate and graduate students studying energy justice, ethics and environment, as well as energy scholars, policy makers, and energy analysts.

Energy Level Alignment and Electron Transport Through Metal/Organic Contacts

by Enrique Abad

In recent years, ever more electronic devices have started to exploit the advantages of organic semiconductors. The work reported in this thesis focuses on analyzing theoretically the energy level alignment of different metal/organic interfaces, necessary to tailor devices with good performance. Traditional methods based on density functional theory (DFT), are not appropriate for analyzing them because they underestimate the organic energy gap and fail to correctly describe the van der Waals forces. Since the size of these systems prohibits the use of more accurate methods, corrections to those DFT drawbacks are desirable. In this work a combination of a standard DFT calculation with the inclusion of the charging energy (U) of the molecule, calculated from first principles, is presented. Regarding the dispersion forces, incorrect long range interaction is substituted by a van der Waals potential. With these corrections, the C60, benzene, pentacene, TTF and TCNQ/Au(111) interfaces are analyzed, both for single molecules and for a monolayer. The results validate the induced density of interface states model.

Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces

by Raphael Schlesinger

This work investigates the energy-level alignment of hybrid inorganic/organic systems (HIOS) comprising ZnO as the major inorganic semiconductor. In addition to offering essential insights, the thesis demonstrates HIOS energy-level alignment tuning within an unprecedented energy range. (Sub)monolayers of organic molecular donors and acceptors are introduced as an interlayer to modify HIOS interface-energy levels. By studying numerous HIOS with varying properties, the author derives generally valid systematic insights into the fundamental processes at work. In addition to molecular pinning levels, he identifies adsorption-induced band bending and gap-state density of states as playing a crucial role in the interlayer-modified energy-level alignment, thus laying the foundation for rationally controlling HIOS interface electronic properties. The thesis also presents quantitative descriptions of many aspects of the processes, opening the door for innovative HIOS interfaces and for future applications of ZnO in electronic devices.

Energy Limits in Computation: A Review of Landauer’s Principle, Theory and Experiments

by Craig S. Lent Alexei O. Orlov Wolfgang Porod Gregory L. Snider

This book is a single-source reference to the issues involved in the Landauer principle, which has gained new prominence recently, due to the large amount of heat generated by today’s computers. If Landauer’s principle is correct, there may be ways to build computers that dissipate far less power (corresponding to heat generated) than today’s computers. This book brings together all sides of the discussions regarding Landauer’s principle, both theoretical and experimental, empowering readers to gain better understanding of dissipation in computation, and the limits if any to progress in computation related to energy dissipation. It represents the best and most thorough examination of the important issue of Landauer’s principle that is available in one volume.Provides an in-depth investigation of the Landauer principle and how it relates to the possible existence of lower bounds on dissipation in computation;Gathers together both sides of the discussion: those who agree with Landauer and his conclusions, and those who think that Landauer was not correct, offering fresh perspective on the issues in the new light of experiments;Offers insight into the future of silicon CMOS and the limits if any to progress in computation related to energy dissipation.

Energy, Machines, and Motion: Student Guide and Source Book

by National Science Resources Center

NIMAC-sourced textbook

Energy Makes It All Go

by Kevin Beals Ashley Chase

NIMAC-sourced textbook

Energy Makes Things Happen (Let's-Read-and-Find-Out Science)

by Kimberly Brubaker Bradley Paul Meisel

Simple language and humorous illustrations show how energy comes originally from the sun and can be transferred from one thing to another.

Energy Management: Big Data in Power Load Forecasting

by Valentin A. Boicea

This book introduces the principle of carrying out a medium-term load forecast (MTLF) at power system level, based on the Big Data concept and Convolutionary Neural Network (CNNs). It also presents further research directions in the field of Deep Learning techniques and Big Data, as well as how these two concepts are used in power engineering. Efficient processing and accuracy of Big Data in the load forecast in power engineering leads to a significant improvement in the consumption pattern of the client and, implicitly, a better consumer awareness. At the same time, new energy services and new lines of business can be developed. The book will be of interest to electrical engineers, power engineers, and energy services professionals.

Energy Management: Conservation and Audits

by Anil Kumar Om Prakash Prashant Singh Chauhan Samsher Gautam

Energy Management: Conservation and Audit discusses the energy scenario, including energy conservation, management, and audit, along with the methodology supported by industrial examples. Energy economics of systems has been elaborated with concepts of life cycle assessment and costing, and rate of return. Topics such as energy storage, co-generation, and waste heat recovery to energy efficiency have discussed. The challenges faced in conserving energy sources (steam and electricity) have elaborated along with the improvements in the lighting sector. Further, it covers optimization procedures for the development in the industry related to energy conservation. The researchers, senior undergraduate, and graduate students focused on Energy Management, Sustainable Energy, Renewable Energy, Energy Audits, and Energy Conservation. This book covers current information related to energy management and includes energy audit and review all the leading equipment (boilers, CHP, pumps, heat exchangers) as well as procedural frameworks (energy audits, action planning, monitoring). It includes energy production and management from an industrial perspective, along with highlighting the various processes involved in energy conservation and auditing in various sectors and associated methods. It also explores future energy options and directions for energy security and sustainability.

Energy Management and Conservation Handbook (Mechanical and Aerospace Engineering Series)

by Frank Kreith and D. Yogi Goswami

Energy is the mainstay of industrial societies, and without an adequate supply of energy the social, political and economic stability of nations is put into jeopardy. With supplies of inexpensive fossil fuels decreasing, and climate change factors becoming more threatening, the need to conserve energy and move steadily to more sustainable energy sources is more urgent than ever before. The updated Second Edition of this successful handbook includes chapters from leading experts on the economics and fiscal management of energy, with a focus on the tools available to advance efficiency and conservation measures. Updated coverage of renewable energy sources, energy storage technologies, energy audits for buildings and building systems, and demand-side management is provided. The appendix of the handbook provides extensive data resources for analysis and calculation.

Energy Management and Efficiency for the Process Industries

by Beth P. Jones Alan P. Rossiter

Provides a unique overview of energy management for the process industries Provides an overall approach to energy management and places the technical issues that drive energy efficiency in context Combines the perspectives of freewheeling consultants and corporate insiders In two sections, the book provides the organizational framework (Section 1) within which the technical aspects of energy management, described in Section 2, can be most effectively executed Includes success stories from three very different companies that have achieved excellence in their energy management efforts Covers energy management, including the role of the energy manager, designing and implementing energy management programs, energy benchmarking, reporting, and energy management systems Technical topics cover efficiency improvement opportunities in a wide range of utility systems and process equipment types, as well as techniques to improve process design and operation

Energy Management and Energy Efficiency in Industry: Practical Examples (Green Energy and Technology)

by Durmuş Kaya Fatma Çanka Kılıç Hasan Hüseyin Öztürk

This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers’ own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: • Reducing unit production costs by ensuring the reduction of energy costs, • Efficient and quality energy use, • Meeting market needs while maintaining competitive conditions, • Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, • Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.

Energy Management in Buildings Using Photovoltaics

by Elena Papadopoulou

Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how adopting 'best practices' for energy management and harvesting can reduce the need to construct new generating facilities. Illustrated with figures, tables and photos, Energy Management in Buildings Using Photovoltaics provides an introduction and step by step instructions on designing and planning photovoltaic systems and energy policies for both residential and industrial buildings. With particular focus on the example of provided by European industry, the creation of energy efficient systems is explored including chapters on: Zero Energy Buildings, Photovoltaics Technology, and Connection of the Network By presenting this topic from basic introduction to highly technical analysis, Energy Management in Buildings Using Photovoltaics acts a study guide for postgraduate students as well as a key point of reference for researchers and technical consultants in the field of photovoltaic systems.

Energy Management in Illuminating Systems

by Kao Chen

As our dependence on and need for abundant energy grows, it becomes increasingly important for engineers and managers to develop and maintain energy efficient systems and build effective energy management programs. Energy Management in Illuminating Systems presents the latest concepts, innovative methods, and state-of-the art technologies in commercial or industrial lighting systems and energy management.An effective energy management program comprises three essential elements: organization, technology, and economics. However, the success of any management program clearly must begin with an energy effective illuminating system, which in turn depends upon using sound engineering analysis and design principles during the projects early stages. In this book, the author-with long and unique experience in the field-provides the details of proven methods for achieving these goals. He presents:How to organize and operate the illumination energy management programThe elements of designing energy effective illuminating systems-systems that can also increase worker productivity and reduce operating costsThe latest in efficient system components, including light sources, ballasts, and luminairesHow to evaluate energy efficiency, including discussion of the impact of energy efficient equipment on power quality, harmonics, the ""K"" factor, and lighting energy standards Energy Management in Illuminating Systems shows how to design and manage energy effective lighting systems for industrial or commercial facilities. With this book, designers, engineers, and managers finally have a complete, how-to guide for applying practical energy management principles to various systems of illumination.

Energy Management of Integrated Energy System in Large Ports (Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping #18)

by Wentao Huang Moduo Yu Hao Li Nengling Tai

This open access book provides a detailed exploration of energy management in seaport integrated energy systems, highlighting their potential to replace conventional fuel-based energy usage and promote sustainable development of large ports. In order to achieve carbon neutrality, energy management technologies are crucial for the sustainable development of port systems that couple energies, logistics, and maritime transportation. Research on seaport integrated energy systems has attracted scholars and scientists from various disciplines, such as port electrification, logistics, microgrids, renewable energies, energy storages, and port automation. Taking a holistic approach, this book establishes a fundamental framework for the topic and discusses the electrification process, coupling mechanisms and modeling, optimal planning, low-carbon and economic operation, as well as applications of integrated energy systems in seaports. This book is intended for researchers, graduate students, and other readers interested in green seaport energy management and low-carbon operation technologies under the coupling between logistics and multi-energy systems.

Energy Markets and Responsive Grids: Modeling, Control, and Optimization (The IMA Volumes in Mathematics and its Applications #162)

by Sean Meyn Tariq Samad Ian Hiskens Jakob Stoustrup

This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.

Energy Materials: A Short Introduction to Functional Materials for Energy Conversion and Storage

by Aliaksandr S. Bandarenka

Energy Materials: A Short Introduction to Functional Materials for Energy Conversion and Storage provides readers with an accessible overview of the functional materials currently employed or investigated for energy provision, conversion, and storage. Rather than exploring the physical and chemical basics of energy conversion and storage, this book focuses on the various materials used in this field with simple explanations of their design principles, specific functionality, and quantitative figures of merit. It is suited for advanced undergraduate and graduate students studying energy and energy materials in physics, material science, engineering, and chemistry courses, as well as scientists starting their research in the field of functional materials for energy applications. Key Features: Provides an accessible introduction to complex subjects in simple terms with pedagogical features to enhance learning Contains the latest developments in this exciting and growing area Discusses examples from modern high-impact research and applications

Refine Search

Showing 21,476 through 21,500 of 73,545 results