Browse Results

Showing 29,401 through 29,425 of 73,734 results

Gravitational Few-Body Dynamics: A Numerical Approach

by Seppo Mikkola

Using numerical integration, it is possible to predict the individual motions of a group of a few celestial objects interacting with each other gravitationally. In this introduction to the few-body problem, a key figure in developing more efficient methods over the past few decades summarizes and explains them, covering both basic analytical formulations and numerical methods. The mathematics required for celestial mechanics and stellar dynamics is explained, starting with two-body motion and progressing through classical methods for planetary system dynamics. This first part of the book can be used as a short course on celestial mechanics. The second part develops the contemporary methods for which the author is renowned - symplectic integration and various methods of regularization. This volume explains the methodology of the subject for graduate students and researchers in celestial mechanics and astronomical dynamics with an interest in few-body dynamics and the regularization of the equations of motion.

Gravitational Lensing

by Scott Dodelson

Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

Gravitational Physics: Exploring the Structure of Space and Time

by Committee on Gravitational Physics

Gravitational Physics assesses the achievements of the field over the past decade in both theory and experiment, identifies the most promising opportunities for research in the next decade, and describes the resources necessary to realize those opportunities. A major theme running through the opportunities is the exploration of strong gravitational fields, such as those associated with black holes.The book, part of the ongoing decadal survey Physics in a New Era, examines topics such as gravitational waves and their detection, classical and quantum theory of strong gravitational fields, precision measurements, and astronomical observations relevant to the predictions of Einstein's theory of general relativity.

Gravitational Theories Beyond General Relativity (Springer Theses)

by Iberê Kuntz

Despite the success of general relativity in explaining classical gravitational phenomena, several problems at the interface between gravitation and high energy physics still remain open. The purpose of this thesis is to explore quantum gravity and its phenomenological consequences for dark matter, gravitational waves and inflation. A new formalism to classify gravitational theories based on their degrees of freedom is introduced and, in light of this classification, it is argued that dark matter is no different from modified gravity. Gravitational waves are shown to be damped due to quantum degrees of freedom. The consequences for gravitational wave events are also discussed. The non-minimal coupling of the Higgs boson to gravity is studied in connection with Starobinsky inflation and its implications for the vacuum instability problem is analyzed.

Gravitational Wave Astrophysics

by Carlos F. Sopuerta

This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics - Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

Gravitational Wave Astrophysics with Pulsar Timing Arrays

by Chiara M. F. Mingarelli

This Ph. D. thesis from the University of Birmingham UK opens new research avenues in the use of Pulsar Timing Arrays (PTAs) to study populations of super-massive black hole binaries through gravitational-wave observations. Chiara Mingarelli's work has shown for the first time that PTAs can yield information about the non-linear dynamics of the gravitational field. This is possible because PTAs capture, at the same time, radiation from the same source emitted at stages of its binary evolution that are separated by thousands of years. Dr. Mingarelli, who is the recipient of a Marie Curie International Outgoing Fellowship, has also been amongst the pioneers of the technique that will allow us to probe the level of anisotropy of the diffuse gravitational-wave background radiation from the whole population of super-massive black hole binaries in the Universe. Indeed, future observations will provide us with hints about the distribution of galaxies harboring massive black holes and insights into end products of hierarchical mergers of galaxies.

Gravitational Wave Detection and Data Analysis for Pulsar Timing Arrays

by Rutger Haasteren

Pulsar timing is a promising method for detecting gravitational waves in the nano-Hertz band. In his prize winning Ph. D. thesis Rutger van Haasteren deals with how one takes thousands of seemingly random timing residuals which are measured by pulsar observers, and extracts information about the presence and character of the gravitational waves in the nano-Hertz band that are washing over our Galaxy. The author presents a sophisticated mathematical algorithm that deals with this issue. His algorithm is probably the most well-developed of those that are currently in use in the Pulsar Timing Array community. In chapter 3, the gravitational-wave memory effect is described. This is one of the first descriptions of this interesting effect in relation with pulsar timing, which may become observable in future Pulsar Timing Array projects. The last part of the work is dedicated to an effort to combine the European pulsar timing data sets in order to search for gravitational waves. This study has placed the most stringent limit to date on the intensity of gravitational waves that are produced by pairs of supermassive black holes dancing around each other in distant galaxies, as well as those that may be produced by vibrating cosmic strings. Rutger van Haasteren has won the 2011 GWIC Thesis Prize of the Gravitational Wave International Community for his innovative work in various directions of the search for gravitational waves by pulsar timing. The work is presented in this Ph. D. thesis.

Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis (Wiley Series In Cosmology Ser. #1)

by Jolien D. Creighton Warren G. Anderson

This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitational wave astronomy and astrophysics.

Gravitational Waves: A History of Discovery

by Hartmut Grote

The historic detection of gravitational waves on September 14, 2015, prompted by the highly energetic fusion of two black holes, has made events in the universe "audible" for the first time. This expansion of the scientific sensorium has opened a new chapter in astronomy and already led to, among others, fascinating new insights about the abundance of black holes, the collision of neutron stars, and the origin of heavy chemical elements. The history of this event, which is epochal for physics, is reconstructed in this book, along with a walk-through of the main principles of how the detectors operate and a discussion of how the search for gravitational waves is conducted. The book concludes with an update of the latest detections and developments to date and a brief look into the future of this exciting research field. This book is accessible to non-specialist readers from a general audience and is also an excellent introduction to the topic for undergraduates in physics. Features: Provides an introduction to the historic discovery of gravitational waves Explains the inner workings of the detectors and the search to find the waves hidden in the data Authored by a renowned specialist involved in the ground-breaking discovery Hartmut Grote is a Professor of physics at Cardiff University, UK. His main expertise is in experimental gravitational-wave physics, and he has worked on building and improving gravitational wave detectors for over 20 years. From 2009 to 2017, he was the scientific leader of the British-German gravitational-wave detector: GEO600.

Gravitational Waves: A New Window to the Universe

by Ajit Kembhavi Pushpa Khare

Gravitational waves were first predicted by Albert Einstein in 1916, a year after the development of his new theory of gravitation known as the general theory of relativity. This theory established gravitation as the curvature of space-time produced by matter and energy. To be discernible even to the most sensitive instruments on Earth, the waves have to be produced by immensely massive objects like black holes and neutron stars which are rotating around each other, or in the extreme situations which prevail in the very early ages of the Universe. This book presents the story of the prediction of gravitational waves by Albert Einstein, the early attempts to detect the waves, the development of the LIGO detector, the first detection in 2016, the subsequent detections and their implications. All concepts are described in some detail, without the use of any mathematics and advanced physics which are needed for a full understanding of the subject. The book also contains description of electromagnetism, Einstein’s special theory and general theory of relativity, white dwarfs, neutron stars and black holes and other concepts which are needed for understanding gravitational waves and their effects. Also described are the LIGO detectors and the cutting edge technology that goes into building them, and the extremely accurate measurements that are needed to detect gravitational waves. The book covers these ideas in a simple and lucid fashion which should be accessible to all interested readers. The first detection of gravitational waves was given a lot of space in the print and electronic media. So, the curiosity of the non-technical audience has been aroused about what gravitational waves really are and why they are so important. This book seeks to answer such questions.

Gravitational Waves from a Quantum Field Theory Perspective (Lecture Notes in Physics #1013)

by Subhendra Mohanty

This book treats the subject of gravitational waves (GWs) production in binary stars or black-holes and in the early universe, using tools of quantum field theory which are familiar to graduate students and researchers in particle physics. A special focus is given to the generation of templates of gravitational wave signals from Feynman diagram calculations of transition amplitudes, which interests active researchers in GWs. The book presents field theory concepts, like supersymmetry realized in spinning binaries and soft-graviton theorems, that can have practical applications in novel GW signals, like the memory effect. The book also aims at specialists in both GWs and particle physics addressing cosmological models of phase transition and inflation that can be tested in observations at terrestrial and space based interferometers, pulsar timing arrays, and the cosmic microwave anisotropy observations.

Gravitationswellen: Einblicke in Theorie, Vorhersage und Entdeckung (essentials)

by Domenico Giulini Claus Kiefer

100 Jahre nach Einsteins Arbeit zur Relativit#65533;tstheorie ist der Beweis f#65533;r die Existenz von Gravitationswellen eine Sensation. Die angesehenen Wissenschaftler Domenico Giulini und Claus Kiefer geben in diesem essential einen kompakten #65533;berblick #65533;ber dieses Ph#65533;nomen der theoretischen Physik und #65533;ber die indirekten und die k#65533;rzlich gelungenen direkten Nachweise von Gravitationswellen. Vorhergesagt durch die Allgemeine Relativit#65533;tstheorie, entstehen sie in hochenergetischen astrophysikalischen Prozessen und liefern wertvolle Informationen #65533;ber Supernovae und die Kollision schwarzer L#65533;cher. Ausgehend von der ersten Detektion besitzt die Menschheit mit diesen Erkenntnissen ,,ein neues Fenster" ins Universum, dass die Forschung noch lange besch#65533;ftigen wird.

Gravity: A Ladybird Expert Book

by Jim Al-Khalili

How does gravity work? Learn from the experts in the ALL-NEW LADYBIRD EXPERT SERIESDiscover the vast and momentus effects of this profound force on the world around us, written by celebrated physicist and broadcaster Jim Al-Khalili.Inside you will learn:- What is Gravity?- How does it work?- And why are there extreme gravitational environments?Above all, discover how gravity controls the shape of space and the passage of time itself, influencing the history and destiny of the entire Universe.IT'S SO MUCH MORE THAN 'WHAT GOES UP MUST COME DOWN.'Gravity is a fascinating and authoritative introduction to a phenomenon as familiar to us as breathing.Learn about other topics in the Ladybird Experts series including The Big Bang, Quantum Physics, Climate Change and Evolution.

Gravity: How the Weakest Force in the Universe Shaped Our Lives

by Brian Clegg

A history of gravity, and a study of its importance and relevance to our lives, as well as its influence on other areas of science. Physicists will tell you that four forces control the universe. Of these, gravity may the most obvious, but it is also the most mysterious. Newton managed to predict the force of gravity but couldn't explain how it worked at a distance. Einstein picked up on the simple premise that gravity and acceleration are interchangeable to devise his mind-bending general relativity, showing how matter warps space and time. Not only did this explain how gravity worked – and how apparently simple gravitation has four separate components – but it predicted everything from black holes to gravity's effect on time. Whether it's the reality of anti-gravity or the unexpected discovery that a ball and a laser beam drop at the same rate, gravity is the force that fascinates.

Gravity

by George Gamow

A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own drawings, both technical and fanciful, this remarkably reader-friendly book focuses particularly on Newton, who developed the mathematical system known today as the differential and integral calculus. Readers averse to equations can skip the discussion of the elementary principles of calculus and still achieve a highly satisfactory grasp of a fascinating subject.Starting with a chapter on Galileo's pioneering work, this volume devotes six chapters to Newton's ideas and other subsequent developments and one chapter to Einstein, with a concluding chapter on post-Einsteinian speculations concerning the relationship between gravity and other physical phenomena, such as electromagnetic fields.

Gravity: Where Do We Stand?

by Roberto Peron Monica Colpi Vittorio Gorini Ugo Moschella

This book presents an overview of the current understanding of gravitation, with a focus on the current efforts to test its theory, especially general relativity. It shows how the quest for a deeper theory, which would possibly incorporate gravity in the quantum realm, is more than ever an open field. The majority of the contributions deals with the manifold facets of "experimental gravitation", but the book goes beyond this and covers a broad range of subjects from the foundations of gravitational theories to astrophysics and cosmology. The book is divided into three parts. The first part deals with foundations and Solar System tests. An introductory pedagogical chapter reviews first Newtonian gravitational theory, special relativity, the equivalence principle and the basics of general relativity. Then it focuses on approximation methods, mainly the post-Newtonian formalism and the relaxed Einstein equations, with a discussion on how they are used in treating experimental tests and in the problem of generation and detection of gravitational waves. Following this is a set of chapters describing the most recent experiments, techniques and observations on the testing of gravity theories in the laboratory, around the Earth and in the Solar System. The second part is dedicated to astrophysical topics deeply linked with the study of gravitation, namely binary pulsars and the perspective of direct detection of gravitational waves. These cases are paradigmatic in that the gravitational signals act at the same time as messengers helping us to understand the properties of important and wide classes of astrophysical objects. The third part explores the many open issues in current knowledge of gravitation machinery, especially related to astrophysical and cosmological problems and the way possible solutions to them impact the quest for a quantum theory of gravitation and unified theory. Included is a selection of the many possible paths, giving a hint to the subtleties one is called upon. Whenever possible, a close link to observational constraints and possible experimental tests is provided. In selecting the topics of the various contributions, particular care has been devoted to ensure their fit in a coherent representation of our understanding of gravitational phenomena. The book is aimed at graduate level students and will form a valuable reference for those working in the field.

Gravity

by Eric Poisson

This textbook explores approximate solutions to general relativity and their consequences. It offers a unique presentation of Einstein's theory by developing powerful methods that can be applied to astrophysical systems. Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions to the Einstein field equations. The book explores the motion of self-gravitating bodies, the physics of gravitational waves, and the impact of radiative losses on gravitating systems. It concludes with a brief overview of alternative theories of gravity. Ideal for graduate courses on general relativity and relativistic astrophysics, the book examines real-life applications, such as planetary motion around the Sun, the timing of binary pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics and provide historical context, and over 100 exercises present challenging tests of the material covered in the main text.

Gravity, a Geometrical Course: Development of the Theory and Basic Physical Applications

by Pietro Giuseppe Frè

'Gravity, a Geometrical Course' presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book, divided in two volumes, is a rich resource for graduate students and those who wish to gain a deep knowledge of the subject without an instructor. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differentiable manifolds, fibre-bundles, differential forms, and the theory of connections are covered, with a sketchy introduction to homology and cohomology. (Pseudo)-Riemannian geometry is presented both in the metric and in the vielbein approach. Physical applications include the motions in a Schwarzschild field leading to the classical tests of GR (light-ray bending and periastron advance) discussion of relativistic stellar equilibrium, white dwarfs, Chandrasekhar mass limit and polytropes. An entire chapter is devoted to tests of GR and to the indirect evidence of gravitational wave emission. The formal structure of gravitational theory is at all stages compared with that of non gravitational gauge theories, as a preparation to its modern extension, namely supergravity, discussed in the second volume. Pietro Frè is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, "Supergravity and Superstrings" and "The N=2 Wonderland", He is also the author of a popular science book on cosmology and two novels, in Italian.

Gravity, a Geometrical Course

by Pietro Giuseppe Frè

'Gravity, a Geometrical Course' presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume Two is covers black holes, cosmology and an introduction to supergravity. The aim of this volume is two-fold. It completes the presentation of GR and it introduces the reader to theory of gravitation beyond GR, which is supergravity. Starting with a short history of the black hole concept, the book covers the Kruskal extension of the Schwarzschild metric, the causal structures of Lorentzian manifolds, Penrose diagrams and a detailed analysis of the Kerr-Newman metric. An extensive historical account of the development of modern cosmology is followed by a detailed presentation of its mathematical structure, including non-isotropic cosmologies and billiards, de Sitter space and inflationary scenarios, perturbation theory and anisotropies of the Cosmic Microwave Background. The last three chapters deal with the mathematical and conceptual foundations of supergravity in the frame of free differential algebras. Branes are presented both as classical solutions of the bulk theory and as world-volume gauge theories with particular emphasis on the geometrical interpretation of kappa-supersymmetry. The rich bestiary of special geometries underlying supergravity lagrangians is presented, followed by a chapter providing glances on the equally rich collection of special solutions of supergravity. Pietro Frè is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, "Supergravity and Superstrings" and "The N=2 Wonderland", He is also the author of a popular science book on cosmology and two novels, in Italian.

Gravity and Kinetic Energy

by Lawrence Hall of Science University of California at Berkeley

NIMAC-sourced textbook

Gravity and Magnetic Exploration: Principles, Practices, and Applications

by William J. Hinze Ralph R. B. von Frese Afif H. Saad

This combination of textbook and reference manual provides a comprehensive account of gravity and magnetic methods for exploring the subsurface using surface, marine, airborne and satellite measurements. It describes key current topics and techniques, physical properties of rocks and other earth materials, and digital data analysis methods used to process and interpret anomalies for subsurface information. Each chapter starts with an overview and concludes by listing key concepts to consolidate new learning. An accompanying website presents problem sets and interactive computer-based exercises, providing hands-on experience of processing, modeling and interpreting data. A comprehensive online suite of full-color case histories illustrates the practical utility of modern gravity and magnetic surveys. This is an ideal text for advanced undergraduate and graduate courses and reference text for research academics and professional geophysicists. It is a valuable resource for all those interested in petroleum, engineering, mineral, environmental, geological and archeological exploration of the lithosphere.

Gravity and Strings

by Tomás Ortín

Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

Gravity and the Quantum

by Jasjeet Singh Bagla Sunu Engineer

This book provides a compilation of in-depth articles and reviews on key topics within gravitation, cosmology and related issues. It is a celebratory volume dedicated to Prof. Thanu Padmanabhan ("Paddy"), the renowned relativist and cosmologist from IUCAA, India, on the occasion of his 60th birthday. The authors, many of them leaders of their fields, are all colleagues, collaborators and former students of Paddy, who have worked with him over a research career spanning more than four decades. Paddy is a scientist of diverse interests, who attaches great importance to teaching. With this in mind, the aim of this compilation is to provide an accessible pedagogic introduction to, and overview of, various important topics in cosmology, gravitation and astrophysics. As such it will be an invaluable resource for scientists, graduate students and also advanced undergraduates seeking to broaden their horizons.

Gravity Buster: Journal #2 of a Cardboard Genius

by Frank Asch

In Alex Archer's previous journal, Star Jumper, he revealed how his amazing cardboard spacecraft was tragically destroyed during a pillow fight with his little brother Jonathan. Alex knows that all geniuses encounter a setback now and then, yet this setback has only spurred him on to even greater achievements. Alex's new spaceship is twice the size of the old one and is equipped with many astonishing features, such as a telescope that can see around the universe and an electromagnetic shield stronger than Superman's cape! But will Zoe Breen want to be Alex's co-pilot when he leaves Earth and goes galaxy-hopping? And what about Alex's rotten little brother? Does Jonathan really want to drive Alex stark-raving mad? Or is he just looking for some big brother attention? Find out the answers to all these questions and more as the cardboard genius unleashes his brainchild - the Gravity Buster - and defies the laws of physics! But who will bring him back down to Earth?

Gravity, Cosmology, and Astrophysics: A Journey of Exploration and Discovery with Female Pioneers (Lecture Notes in Physics #1022)

by Betti Hartmann Jutta Kunz

This book is a compilation of enlightening tutorial essays, showcasing the forefront of research by exceptional female scientists. This invaluable collection provides graduate students and researchers in the field with an engaging and pedagogical introduction to a wide range of compelling topics. Delve into the depths of theoretical and observational realms, exploring intriguing subjects including modified gravity models, quantum gravity, fields in curved space-time, particle dynamics, gravitational waves, and enigmatic black holes. Embracing both the theoretical foundations and the practical applications, this comprehensive edited volume offers an accessible and all-encompassing panorama of gravity and cosmology. Moreover, it shines a much-needed spotlight on the significant contributions made by remarkable women across the globe, fostering recognition and admiration for their indispensable role in shaping this ever-evolving field.

Refine Search

Showing 29,401 through 29,425 of 73,734 results