- Table View
- List View
Microfluidics for Assisted Reproduction in Animals
by Vinod Kumar YataThis book describes the fundamentals of microfluidics and fabrication methods of microfluidic devices that can be adopted for animal-assisted reproduction. It presents microfluidic methods for sorting highly fertile spermatozoa. This book also describes the application of microfluidics in vitro fertilization and embryo culture. It discusses the use of microfluidics in sperm sexing and the cryopreservation of animal gametes and embryos. Lastly, the book examines the potential opportunities of microfluidics in infertility diagnosis, sperm selection and guidance, oocyte selection, insemination, and embryo monitoring.
Microfluidics for Biologists
by Chandra K. Dixit Ajeet KaushikThis book describes novel microtechnologies and integration strategies for developing a new class of assay systems to retrieve desired health information from patients in real-time. The selection and integration of sensor components and operational parameters for developing point-of-care (POC) are also described in detail. The basics that govern the microfluidic regimen and the techniques and methods currently employed for fabricating microfluidic systems and integrating biosensors are thoroughly covered. This book also describes the application of microfluidics in the field of cell and molecular biology, single cell biology, disease diagnostics, as well as the commercially available systems that have been either introduced or have the potential of being used in research and development. This is an ideal book for aiding biologists in understanding the fundamentals and applications of microfluidics. This book also: Describes the preparatory methods for developing 3-dimensional microfluidic structures and their use for Lab-on-a-Chip design Explains the significance of miniaturization and integration of sensing components to develop wearable sensors for point-of-care (POC) Demonstrates the application of microfluidics to life sciences and analytical chemistry, including disease diagnostics and separations Motivates new ideas related to novel platforms, valving technology, miniaturized transduction methods, and device integration to develop next generation sequencing Discusses future prospects and challenges of the field of microfluidics in the areas of life sciences in general and diagnostics in particular
Microfluidics for Single-Cell Analysis (Integrated Analytical Systems)
by Jin-Ming LinThis book summarizes the various microfluidic-based approaches for single-cell capture, isolation, manipulation, culture and observation, lysis, and analysis. Single-cell analysis reveals the heterogeneities in morphology, functions, composition, and genetic performance of seemingly identical cells, and advances in single-cell analysis can overcome the difficulties arising due to cell heterogeneity in the diagnostics for a targeted model of disease. This book provides a detailed review of the state-of-the-art techniques presenting the pros and cons of each of these methods. It also offers lessons learned and tips from front-line investigators to help researchers overcome bottlenecks in their own studies. Highlighting a number of techniques, such as microfluidic droplet techniques, combined microfluidics-mass-spectrometry systems, and nanochannel sampling, it describes in detail a new microfluidic chip-based live single-cell extractor (LSCE) developed in the editor’s laboratory, which opens up new avenues to use open microfluidics in single-cell extraction, single-cell mass spectrometric analysis, single-cell adhesion analysis and subcellular operations. Serving as both an elementary introduction and advanced guidebook, this book interests and inspires scholars and students who are currently studying or wish to study microfluidics-based cell analysis methods.
Microfluidics in Biotechnology (Advances in Biochemical Engineering/Biotechnology #179)
by Janina Bahnemann Alexander GrünbergerThis new volume introduces the applications of microfluidic systems to facilitate biotechnological and biomedical processes. It provides an overview on cutting-edge technologies, summarizes traditional and modern fabrication methods and highlights recent advances regarding the application of lab-on-a-chip (LoC) systems for bioanalytical purposes. This book is ideal for research scientists and students interested at the cross-section between biotechnology, chemistry and chemical engineering.
Microfluidics in Food Processing: Technologies and Applications (Sustainable Industrial and Environmental Bioprocesses)
by Ashok Pandey Claude-Gilles Dussap Ranjna Sirohi Ayon Tarafdar Barjinder Pal KaurThis book serves as a comprehensive introduction to the principles of microfluidization and its diverse applications in the food industry. It explores the use of microfluidics in processing various types of beverages derived from plant products, milk and milk products, cereal-based products, nut-based products, and meat and egg-based products. Additionally, it delves into the application of microfluidics in food micro- and nano-delivery systems, seed protein isolates, and food packaging materials. The initial chapter provides a thorough introduction to the concept of microfluidization, offering readers a comprehensive overview of the underlying principles and techniques involved in this transformative technology. The book highlights the role of microfluidics in the extraction of bioactive ingredients from food sources and explores the use of microfluidic systems for ensuring food safety, including the detection of molecular interactions in food samples. Furthermore, the book explores the application of microfluidics in the fabrication of nanomaterials with tailored properties. With its comprehensive coverage of microfluidization in food processing, this book serves as a valuable resource for researchers, scientists, and professionals in the food industry.
Microfluidics in Pharmaceutical Sciences: Formulation, Drug Delivery, Screening, and Diagnostics (AAPS Introductions in the Pharmaceutical Sciences #14)
by Dimitrios A. Lamprou Edward WeaverThe book covers the basics of microfluidics, current applications in areas such as formulation, drug delivery, drug screening and development, monitoring and diagnostics, and case studies from a teaching perspective to undergraduate and postgraduate students, allowing application of the content in a flipped classroom. Multiple choice questions are included at the end of each chapter. All chapter authors are pioneers and world leaders. This is an ideal book for students, researchers, and industry professionals working on microfluidics in the pharmaceutical sciences.
Microfluidics-Enabled Soft Manufacture
by Liqiu Wang Pingan ZhuThis book covers state-of-the-art development in microfluidics-enabled soft manufacturing (MESM), ranging from fundamentals to applications. The book addresses the long-standing challenge in the manufacture of simultaneously achieving both precise control over nano-/micro-scale structures and large-scale fabrication of materials for pragmatic use, with microfluidics-enabled soft manufacture to fill the gap between the widely-varied length scales involved. It offers a comprehensive insight into the microfluidic generation of fluid systems as liquid templates, such as droplets, bubbles, jets, emulsions, and foams, which are categorized into individual templates, one-dimensional arrays, and two-/three-dimensional assemblies for the modular fabrication of microparticles, microfibers, and porous materials, respectively. MESM enriches the compositional and structural diversity of engineered materials for well-tailored properties and functionalities, markedly broadening the application horizons across interdisciplinary fields, including engineering, environment, physics, chemistry, biology, and medicine. This book aims to systematize this emerging yet versatile and powerful technology, with the hope of aiding the realization of its full potential. Microfluidics-Enabled Soft Manufacture will be an invaluable reference for graduate students, postgraduates, researchers, and practitioners/professionals working in micro and nanofabrication, materials science, surface science, fluid dynamics, and engineering.
Microfluidics: Fundamentals, Devices, and Applications
by Liang Zhao Yujun Song Daojian ChengThe first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
Microfossils
by Howard Armstrong Martin BrasierThis is a new and completely rewritten edition of the well-known text Microfossils (first published in 1980) covering all the major microfossil groups, with information on taxonomy, phylogeny, ecology and palaeoecology. particular attention is given to the uses of microfossils in environmental reconstruction and biostratigraphy numerous line and half-tone illustrations emphasis on practical applications of micropalaeontology only student-friendly micropaleontology text available
Microgel Suspensions: Fundamentals and Applications
by Alberto Fernandez-Nieves Johan Mattsson David A. Weitz Hans M. WyssProviding a vital link between chemistry and physics on the nanoscale, this book offers concise coverage of the entire topic in five major sections, beginning with synthesis of microgel particles and continuing with their physical properties. The phase behavior and dynamics of resulting microgel suspensions feature in the third section, followed by their mechanical properties. It concludes with detailed accounts of numerous industrial, commercial and medical applications. Edited by David Weitz, Professor at Harvard and one of the world's pre-eminent experts in the field.
Microglia in Health and Disease
by Marie-Ève Tremblay Amanda SierraThese past few years have witnessed a revolution in our understanding of microglia, especially since their roles in the healthy central nervous system (CNS) have started to unravel. These cells were shown to actively maintain health, in concert with neurons and other types of CNS cells, providing further insight into their involvement with diseases. Edited by two pioneers in the field, Marie-Ève Tremblay and Amanda Sierra, Microglia in health and disease aims to share with the broader scientific community some of the recent discoveries in microglia research, from a broad perspective, with a collection of 19 chapters from 52 specialists working in 11 countries across 5 continents. To set microglia on the stage, the book begins by explaining briefly who they are, what they do in the healthy and diseased CNS, and how they can be studied. The first section describes in more details their physiological roles in the maturation, function, and plasticity of the CNS, across development, adolescence, adulthood, neuropathic pain, addiction, and aging. The second section focuses on their implication in pathological conditions impairing the quality of life: neurodevelopmental and neuropsychiatric disorders, AIDS, and multiple sclerosis; and in leading causes of death: ischemia and stroke, neurodegenerative diseases, as well as trauma and injury.
Microglia: Methods and Protocols
by José Luis Venero Bertrand JosephKey discoveries concerning the different biological functions of microglia in health and disease have attracted scientists from various fields. In Microglia: Methods and Protocols, expert researchers in the field detail methods for selection of the key cellular, molecular and biochemical techniques that are used in studying the many and varied functions of this fascinating cell. These methods and techniques include microglia cell culture for studying microglia activation and functions, as well as their interaction with other cell types both in vitro and in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microglia: Methods and Protocols is a useful resource for cell biologists, molecular biologists, immunologists, oncologist and neuroscientists.
Microglia: Physiology, Pathophysiology and Therapeutic Potential (Advances in Neurobiology #37)
by Alexei Verkhratsky Marie-Ève TremblayThe past decade has witnessed a revolution in our understanding of microglia, especially since their roles in the healthy CNS have started to unravel. These cells were shown to actively maintain health, in concert with neurons and other types of CNS cells, providing further insight into their crucial involvement with diseases. Edited by Drs. Marie-Ève Tremblay and Alexei Verkhratsky, Microglia: Physiology, Pathophysiology and Therapeutic Potential shares with the scientific and medical community the latest discoveries in the microglial research field, with a truly comprehensive collection of chapters written by the top specialists across five continents. The book begins by explaining briefly what they are, from both historical and evolutionary points of view, and how they can be studied. The first section explains their physiological roles in the maturation, function, and plasticity of the CNS. The second section focuses on their general involvement in neuropathophysiology, and the third section on their critical implication in specific CNS diseases, including neurotrauma, neuropathic pain, ischemia and stroke, infectious diseases, autoimmune diseases, neurodevelopmental and neuropsychiatric disorders, substance use and addiction, sleep disorders, ageing, and neurodegenerative diseases. The fourth section presents their clinical potential as a targeted therapeutic tool for these CNS diseases.
Microgravity Research In Support Of Technologies For The Human Exploration And Development Of Space And Planetary Bodies
by National Research CouncilInformation on Microgravity Research In Support Of Technologies For The Human Exploration And Development Of Space And Planetary Bodies
Microgrid Dynamics and Control
by Bruno François Hassan Bevrani Toshifumi IseThis book discusses relevant microgrid technologies in the context of integrating renewable energy and also addresses challenging issues. The authors summarize long term academic and research outcomes and contributions. In addition, this book is influenced by the authors’ practical experiences on microgrids (MGs), electric network monitoring, and control and power electronic systems. A thorough discussion of the basic principles of the MG modeling and operating issues is provided. The MG structure, types, operating modes, modelling, dynamics, and control levels are covered. Recent advances in DC microgrids, virtual synchronousgenerators, MG planning and energy management are examined. The physical constraints and engineering aspects of the MGs are covered, and developed robust and intelligent control strategies are discussed using real time simulations and experimental studies.
Microgrid Planning and Design: A Concise Guide (Wiley - IEEE)
by Hassan Farhangi Geza JoosA practical guide to microgrid systems architecture, design topologies, control strategies and integration approaches Microgrid Planning and Design offers a detailed and authoritative guide to microgrid systems. The authors - noted experts on the topic - explore what is involved in the design of a microgrid, examine the process of mapping designs to accommodate available technologies and reveal how to determine the efficacy of the final outcome. This practical book is a compilation of collaborative research results drawn from a community of experts in 8 different universities over a 6-year period. Microgrid Planning and Design contains a review of microgrid benchmarks for the electric power system and covers the mathematical modeling that can be used during the microgrid design processes. The authors include real-world case studies, validated benchmark systems and the components needed to plan and design an effective microgrid system. This important guide: Offers a practical and up-to-date book that examines leading edge technologies related to the smart grid Covers in detail all aspects of a microgrid from conception to completion Explores a modeling approach that combines power and communication systems Recommends modeling details that are appropriate for the type of study to be performed Defines typical system studies and requirements associated with the operation of the microgrid Written forgraduate students and professionals in the electrical engineering industry, Microgrid Planning and Design is a guide to smart microgrids that can help with their strategic energy objectives such as increasing reliability, efficiency, autonomy and reducing greenhouse gases.
Microgrids Design and Implementation
by Antonio Carlos Zambroni de Souza Miguel CastillaThis book addresses the emerging trend of smart grids in power systems. It discusses the advent of smart grids and selected technical implications; further, by combining the perspectives of researchers from Europe and South America, the book captures the status quo of and approaches to smart grids in a wide range of countries. It describes the basic concepts, enabling readers to understand the theoretical aspects behind smart grid formation, while also examining current challenges and philosophical discussions. Like the industrial revolution and the birth of the Internet, smart grids are certain to change the way people use electricity. In this regard, a new term – the “prosumer” – is used to describe consumers who may sometimes also be energy producers. This is particularly appealing if we bear in mind that most of the distributed power generation in smart grids does not involve carbon emissions. At first glance, the option of generating their own power could move consumers to leave their current energy provider. Yet the authors argue that doing so is not a wise choice: utilities will play a central role in this new scenario and should not be ignored.
Microheterogeneity of Glycoprotein Hormones
by B.A. KeelEleven contributions review our knowledge of the characterization of glycoprotein hormone microheterogeneity, the relationships between biological activity and microheterogeneity, the endocrinological control mechanisms involved in the production of these forms and the underlying biochemical basis for glycoprotein hormone microheterogeneity. Organized so that the heterogeneity of each hormone from a variety of species is covered in detail, the peptide components and oligosaccaride stuctures of glycoprotein hormones are reviewed, and the heterogeneity of uncombined alpha and beta subunits is discussed.
Microhydrodynamics and Complex Fluids
by Dominique Barthes-BieselA self-contained textbook, Microhydrodynamics and Complex Fluids deals with the main phenomena that occur in slow, inertialess viscous flows often encountered in various industrial, biophysical, and natural processes. It examines a wide range of situations, from flows in thin films, porous media, and narrow channels to flows around suspended partic
Microhydrodynamics: Principles and Selected Applications (Dover Civil and Mechanical Engineering)
by Sangtae Kim Seppo J. Karrila"This book is well organized and comprehensive . . . an eloquent and enduring statement of significant hydrodynamic principles." -- AIChE JournalMicrohydrodynamics concerns the flow and related phenomena pertinent to the motion of small particles suspended in viscous fluids. This text focuses on determining the motion of a particle or particles through a viscous fluid in bounded and unbounded flow. Its central theme is the mobility relation between particle motion and forces.Microhydrodynamics: Principles and Selected Applications functions as a manual that explains methods for solving particulate flows at low-Reynolds number, from analytical to computational methods. The ever-increasing growth in computational power has resulted in a similar growth in the range of solvable problems in microhydrodynamics. Suitable for graduate students in engineering and applied mathematics, this text treats the mathematical foundations and highlights the interplay of both mathematical and physical insights, guiding readers through single particle theory and problems related to multiparticle analyses.
Microinjection
by David J. CarrollAs the number of sequenced genomes continues to increase, understanding the functions of newly discovered molecules will require greater efficiency and further study within the context of live cells. In Microinjection: Methods and Applications, expert researchers contribute methods utilizing microinjection techniques ranging from expression of RNA to the integration of DNA into the genome with the ultimate goal of learning about gene expression, signal transduction, and protein function within these living cells. This versatile volume updates established techniques such as cRNA expression in Xenopus oocytes, and examines new, cutting-edge technologies, including antisense morpholino oligonucleotides, RNAi for knockdown experiments, and the use of integrase to produce transgenic animals, all through microinjection techniques that can be easily adopted by any lab. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include brief introductions to the topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and Notes sections, highlighting tips on troubleshooting and avoiding known pitfalls. Comprehensive and easily accessible, Microinjection: Methods and Applications is an ideal source for new ideas and techniques certain to aid in the advance of biological research.
Microinjection: Methods And Protocols (Methods in Molecular Biology #1874)
by Chengyu Liu Yubin DuThis detailed book explores how microinjection will be used in the foreseeable future, not only for generating animal models for biomedical research but also for changing economically or ecologically important species that can broadly impact our society in general. The opening half of the book focuses on methods for generating mouse models, as they are still the most popular in genome engineering research, while the second half examines gene-editing in a variety of other species, opened up by the developments in ZFN, TALEN, and CRISPR techniques. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microinjection: Methods and Protocols serves as an ideal guide for researchers looking to take advantage of the breakthrough technologies in gene-editing and embryo micromanipulations.
Microlands: The Future of Life on Earth (and Why It’s Smaller Than You Think)
by David Ewing Duncan J. Craig Venter'An epic travelogue, brimming with the excitement of discovery. With characteristic panache, Venter unveils the teeming array of bacteria, viruses, and eukaryotes that crowd our planet's oceans' - Siddhartha Mukherjee'This page-turner gives . . . the thrill of seeing our planet's largest universe through the brilliant, intrepid eyes of the scientist who has done more than anyone to unlock the secrets of life' - Martine Rothblatt'A tour de force . . . Venter has expanded biology's horizons. This book explores microbial life on a global scale, providing cutting-edge solutions to problems of environmental change' - Aristides Patrinos'A ripping tale . . . to revolutionize our understanding of our bodies, the oceans, and the planet' - Jack Gilbert'An exhilarating account of how creative science is accomplished' - Sir Richard J. Roberts'[A] fascinating tour of Planet Microbe' - Bill McKibben'Venter and Duncan expand our scope of what it means to be alive' - Jamie Metzl'Inspiring ... change[s] our ideas of how biology is done' - TelegraphUpon completing his historic work on the Human Genome Project in 2002, J. Craig Venter declared that he would sequence the genetic code of all life on earth. Thus began a fifteen-year quest to collect DNA from the world's oldest and most abundant form of life: microbes. Boarding the Sorcerer II, a 100-foot sailboat turned research vessel, Venter travelled over 65,000 miles around the globe to sample ocean water and the microscopic life within.In this book, Venter and science writer David Ewing Duncan tell the remarkable story of these expeditions and of the momentous discoveries that ensued-of plant-like bacteria that get their energy from the sun, proteins that metabolize vast amounts of hydrogen, and microbes whose genes shield them from ultraviolet light. The result was a massive library of millions of unknown genes, thousands of unseen protein families, and new lineages of bacteria that revealed the unimaginable complexity of life on earth. Yet despite this exquisite diversity, Venter encountered sobering reminders of how human activity is disturbing the delicate microbial ecosystem that nurtures life on earth. In the face of unprecedented climate change, Venter and Duncan show how we can harness the microbial genome to develop alternative sources of energy, food, and medicine that might ultimately avert our destruction.A captivating story of exploration and discovery, this book restores microbes to their rightful place as crucial partners in our evolutionary past and guides to our future.
Microlands: The Future of Life on Earth (and Why It’s Smaller Than You Think)
by David Ewing Duncan J. Craig Venter'An epic travelogue, brimming with the excitement of discovery. With characteristic panache, Venter unveils the teeming array of bacteria, viruses, and eukaryotes that crowd our planet's oceans' - Siddhartha Mukherjee'This page-turner gives . . . the thrill of seeing our planet's largest universe through the brilliant, intrepid eyes of the scientist who has done more than anyone to unlock the secrets of life' - Martine Rothblatt'A tour de force . . . Venter has expanded biology's horizons. This book explores microbial life on a global scale, providing cutting-edge solutions to problems of environmental change' - Aristides Patrinos'A ripping tale . . . to revolutionize our understanding of our bodies, the oceans, and the planet' - Jack Gilbert'An exhilarating account of how creative science is accomplished' - Sir Richard J. Roberts'[A] fascinating tour of Planet Microbe' - Bill McKibben'Venter and Duncan expand our scope of what it means to be alive' - Jamie Metzl'Inspiring ... change[s] our ideas of how biology is done' - TelegraphUpon completing his historic work on the Human Genome Project in 2002, J. Craig Venter declared that he would sequence the genetic code of all life on earth. Thus began a fifteen-year quest to collect DNA from the world's oldest and most abundant form of life: microbes. Boarding the Sorcerer II, a 100-foot sailboat turned research vessel, Venter travelled over 65,000 miles around the globe to sample ocean water and the microscopic life within.In this book, Venter and science writer David Ewing Duncan tell the remarkable story of these expeditions and of the momentous discoveries that ensued-of plant-like bacteria that get their energy from the sun, proteins that metabolize vast amounts of hydrogen, and microbes whose genes shield them from ultraviolet light. The result was a massive library of millions of unknown genes, thousands of unseen protein families, and new lineages of bacteria that revealed the unimaginable complexity of life on earth. Yet despite this exquisite diversity, Venter encountered sobering reminders of how human activity is disturbing the delicate microbial ecosystem that nurtures life on earth. In the face of unprecedented climate change, Venter and Duncan show how we can harness the microbial genome to develop alternative sources of energy, food, and medicine that might ultimately avert our destruction.A captivating story of exploration and discovery, this book restores microbes to their rightful place as crucial partners in our evolutionary past and guides to our future.
Microlenses: Properties, Fabrication and Liquid Lenses (Series in Optics and Optoelectronics)
by Hongrui Jiang Xuefeng ZengDue to the development of microscale fabrication methods, microlenses are being used more and more in many unique applications, such as artificial implementations of compound eyes, optical communications, and labs-on-chips. Liquid microlenses, in particular, represent an important and growing research area yet there are no books devoted to this top