Browse Results

Showing 51,976 through 52,000 of 85,016 results

Optical Absorption of Impurities and Defects in Semiconducting Crystals

by Bernard Pajot Bernard Clerjaud

This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

Optical Angular Momentum

by L. Allen Stephen M. Barnett Miles J. Padgett

Spin angular momentum of photons and the associated polarization of light has been known for many years. However, it is only over the last decade or so that physically realizable laboratory light beams have been used to study the orbital angular momentum of light. In many respects, orbital and spin angular momentum behave in a similar manner, but t

Optical Anisotropy of Biological Polycrystalline Networks: Vector-Parametric Diagnostics (SpringerBriefs in Applied Sciences and Technology)

by Jun Zheng Alexander G. Ushenko Alexander V. Dubolazov Lilia Trifonyuk Iryna V. Soltys Yuriy A. Ushenko

This book highlights the analysis of new azimuth-independent methods of Stokes polarimetry and Mueller-matrixreconstruction of distributions of optical anisotropy parameters using spatial-frequency filtering of manifestations of phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropy for diagnosing changes in the orientational-phase structure of fibrillar networks of histological sections of biological tissues and polycrystalline films of biological fluids.

Optical Applications of Liquid Crystals

by L. Vicari

In recent years, there has been increasing activity in the research and design of optical systems based on liquid crystal (LC) science. Bringing together contributions from leading figures in industry and academia, Optical Applications of Liquid Crystals covers the range of existing applications as well as those in development. Unique in its thorou

Optical Beam Characterization via Phase-Space Tomography

by Alejandro Cámara

This thesis focuses on the fundamental problem of characterising partially coherent beams. The book describes several non-interferometric methods based on phase-space tomography for recovering the spatial coherence information of optical beams. In the context of optical beams, partially coherent light provides numerous advantages over coherent light. From microscopy to optical communications, there are many disciplines that benefit from using partially coherent beams. However, their range of applications currently remains limited due to the complexity of extracting information. In addition to providing a feasible experimental solution for the general case, the book explores several situations in which beam symmetries are exploited to simplify the information extraction process. Each characterisation method is accompanied by a corresponding theoretical explanation and a thorough description of experimental examples.

Optical Binding Phenomena: Observations and Mechanisms

by Jonathan M. Taylor

This thesis addresses optical binding - a new area of interest within the field of optical micromanipulation. It presents, for the first time, a rigorous numerical simulation of some of the key results, along with new experimental findings and also physical interpretations of the results. In an optical trap particles are attracted close to areas of high optical intensities and intensity gradients. So, for example, if two lasers are pointed towards each other (a counter propagating trap) then a single particle is trapped in the centre of the two beams - the system is analogous to a particle being held by two springs in a potential well. If one increases the number of particles in the trap then naively one would expect all the particles to collect in the centre of the well. However, the effect of optical binding means that the presence of one particle affects the distribution of light experienced by another particle, resulting in extremely complex interactions that can lead to unusual 1D and 2D structures to form within the trap. Optical binding is not only of theoretical interest but also has applications in micromanipulation and assembly.

Optical Brain–Computer Interface: Using a Miniscope to Detect Multi-Neuronal Dynamics during Cognition-Related Events

by Chris French Ranjith R Unnithan Dechuan Sun

In this shortform book, Sun, French, and Unnithan explore state-of-the-art optical recording techniques, with a focus on the revolutionary miniaturized fluorescence microscope – the miniscope – for real-time and in vivo monitoring of multi-neuronal dynamics during cognition-related events.The miniscope is a powerful tool that allows real-time in vivo optical recording of multi-neuronal activity in freely moving animals. This book highlights the use of the miniscope in the context of the hippocampus, a brain region crucial for memory and cognition. The authors employ a combination of theoretical concepts, practical applications, and illustrative case studies to deliver a comprehensive understanding of optical recording techniques. They provide step-by-step guides for using the miniscope, offer insights into data analysis, and discuss its implications in the context of hippocampal research and brain–computer interfaces. Readers will gain profound insights into the role of the hippocampus in memory and cognition, and expert knowledge of the latest miniaturized in vivo optical recording techniques. The book provides them with thorough guidance on implementing a miniaturized fluorescence microscope for a brain–computer interface and information on advanced analysis techniques on the activity of large neuronal populations. This book provides an invaluable short and accessible guide for researchers, neuroscientists, and brain–computer interface enthusiasts to enable them to understand and leverage the immense potential of this advanced optical recording methodology.

Optical CDMA Networks

by Hooshang Ghafouri-Shiraz M. Massoud Karbassian

This book focuses heavily on the principles, analysis and applications of code-division multiple-access (CDMA) techniques in optical communication systems and networks.In this book, the authors intimately discuss modern optical networks and their applications in current and emerging communication technologies, evaluating the quality, speed and number of supported services. In particular, principles and fundamentals of optical CDMA techniques from beginner to advanced levels are heavily covered. Furthermore, the authors concentrate on methods and techniques of various encoding and decoding schemes and their structures, as well as analysis of optical CDMA systems with various transceiver models including advanced multi-level incoherent and coherent modulations with the architecture of access/aggregation networks in mind. Moreover, authors examine intriguing topics of optical CDMA networking, compatibility with IP networks, and implementation of optical multi-rate multi-service CDMA networks.Key features:Expanded coverage of optical CDMA networks, starts from principles and fundamentalsComprehensive mathematical modelling and analysis from signal to system levelsAddresses the applications of modern optical networking in the current and emerging communication technologiesGreater focus on advanced optical multi-level incoherent and coherent modulations, spreading codes, and transceiver designsDetailed hardware specifications, system-level block diagrams, and network nodes' functionalitiesThis book appeals to researchers, practicing engineers, and advanced students. It is a practical resource for readers with an interest in optical communications and networks.

Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection (Springer Theses)

by Miguel Dovale Álvarez

Devised at the beginning of the 20th century by french physicists Charles Fabry and Alfred Perot, the Fabry-Perot optical cavity is perhaps the most deceptively simple setup in optics, and today a key resource in many areas of science and technology. This thesis delves deeply into the applications of optical cavities in a variety of contexts: from LIGO’s 4-km-long interferometer arms that are allowing us to observe the universe in a new way by measuring gravitational waves, to the atomic clocks used to realise time with unprecedented accuracy which will soon lead to a redefinition of the second, and the matterwave interferometers that are enabling us to test and measure gravity in a new scale. The work presented accounts for the elegance and versatility of this setup, which today underpins much of the progress in the frontier of atomic and gravitational experimental physics.

Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light

by Denitza Denkova

This thesis focuses on a means of obtaining, for the first time, full electromagnetic imaging of photonic nanostructures. The author also develops a unique practical simulation framework which is used to confirm the results. The development of innovative photonic devices and metamaterials with tailor-made functionalities depends critically on our capability to characterize them and understand the underlying light-matter interactions. Thus, imaging all components of the electromagnetic light field at nanoscale resolution is of paramount importance in this area. This challenge is answered by demonstrating experimentally that a hollow-pyramid aperture probe SNOM can directly image the horizontal magnetic field of light in simple plasmonic antennas - rod, disk and ring. These results are confirmed by numerical simulations, showing that the probe can be approximated, to first order, by a magnetic point-dipole source. This approximation substantially reduces the simulation time and complexity and facilitates the otherwise controversial interpretation of near-field images. The validated technique is used to study complex plasmonic antennas and to explore new opportunities for their engineering and characterization.

Optical Characterization of Thin Solid Films (Springer Series in Surface Sciences #64)

by Olaf Stenzel Miloslav Ohlídal

This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

Optical Code Division Multiple Access: Fundamentals and Applications (Optical Science and Engineering)

by Paul R. Prucnal

Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's optical networks. Building on this background, the discussion moves to coherent and incoherent optical CDMA coding techniques and performance analysis of these codes in fiber optic transmission systems. Individual chapters provide detailed examinations of fiber Bragg grating (FBG) technology including theory, design, and applications; coherent OCDMA systems; and incoherent OCDMA systems. Turning to implementation, the book includes hybrid multiplexing techniques along with system examples and conversion techniques to connect networks that use different multiplexing platforms, state-of-the-art integration technologies, OCDMA network security issues, and OCDMA network architectures and applications, including a look at possible future directions.Featuring contributions from a team of international experts led by a pioneer in optical technology, Optical Code Division Multiple Access: Fundamentals and Applications places the concepts, techniques, and technologies in clear focus for anyone working to build next-generation optical networks.

Optical Coherence Tomography in Dentistry: Scientific Developments to Clinical Applications (Series in Optics and Optoelectronics)

by Gomes, Anderson S. L.

Optical Coherence Tomography (OCT), a method to "see inside of things" without destroying them, has been applied to subjects ranging from materials science to medicine. This book focuses on the biomedical application of OCT in dentistry, covering topics from dental materials to clinical practice. Since the introduction of the OCT method in ophthalmology in 1991, and then dentistry in 1998, developments in OCT methods, particularly in biomedical areas, have led to its dissemination worldwide. The chapters of this book cover the basics and recent global advances of OCT in dentistry, including an overview of the method and its use in cariology, restorative dentistry, dental materials, endodontics, pediatric dentistry, orthodontics, prosthodontics, soft oral tissues and nanodentistry. This book will be of interest to both newcomers in the field as well as those already working in OCT, either in research and/or the clinic. It will be of great use in courses on optical imaging applied to biomedical areas, particularly where it can provide real-life examples of the application of OCT.

Optical Coherence and Quantum Optics

by Leonard Mandel

The advent of lasers in the 1960s led to the development of many new fields in optical physics. This book is a systematic treatment of one of these fields--the broad area that deals with the coherence and fluctuation of light. The authors begin with a review of probability theory and random processes, and follow this with a thorough discussion of optical coherence theory within the framework of classical optics. They next treat the theory of photoelectric detection of light and photoelectric correlation. They then discuss in some detail quantum systems and effects. The book closes with two chapters devoted to laser theory and one on the quantum theory of nonlinear optics. The sound introduction to coherence theory and the quantum nature of light and the chapter-end exercises will appeal to graduate students and newcomers to the field. Researchers will find much of interest in the new results on coherence-induced spectral line shifts, nonclassical states of light, higher-order squeezing, and quantum effects of down-conversion. Written by two of the world's most highly regarded optical physicists, this book is required reading of all physicists and engineers working in optics.

Optical Communications: Components and Systems

by Martin Sibley

The long-awaited third edition of this classic textbook provides a genuinely accessible introduction to the principles and technology of optical communication systems. It takes the reader from the fundamentals of light propagation in optical fibre, through materials and fabrication methods, light sources and modulation, to photodiodes and receiver design, and concludes with a chapter looking at system level integration.Updated throughout, major changes for this third edition include:- coverage of advanced semiconductor laser diode structures (VCSELs and DFBs)- an extended section on fibre amplifiers and lasers- updated discussion of avalanche photodiode structures- expanded coverage of transimpedance and optical preamplifiers- new sections on free-space optical links, VLC, ethernet links, coherent detection and terabit systemsEnhanced with worked examples and end-of-chapter problem sets, the book is aimed at advanced undergraduate and graduate students in electronic engineering, optical science and applied physics, and is ideally suited for adoption as a course text.

Optical Components, Techniques, and Systems in Engineering (Optical Science And Engineering Ser. #28)

by Sirohi

Presents optical techniques and measurement procedures, providing basic background information on optics and lasers, their components and basic systems. Contains information on thermal and laser sources, detectors, and recording materials, semi-conductor laser diodes, and optical techniques such as

Optical Compressive Imaging

by Adrian Stern

This dedicated overview of optical compressive imaging addresses implementation aspects of the revolutionary theory of compressive sensing (CS) in the field of optical imaging and sensing. It overviews the technological opportunities and challenges involved in optical design and implementation, from basic theory to optical architectures and systems for compressive imaging in various spectral regimes, spectral and hyperspectral imaging, polarimetric sensing, three-dimensional imaging, super-resolution imaging, lens-free, on-chip microscopy, and phase sensing and retrieval. The reader will gain a complete introduction to theory, experiment, and practical use for reducing hardware, shortening image scanning time, and improving image resolution as well as other performance parameters. Optics practitioners and optical system designers, electrical and optical engineers, mathematicians, and signal processing professionals will all find the book a unique trove of information and practical guidance.

Optical Computing (Scottish Graduate Ser. #34)

by B.S. Wherrett; F.A.P. Tooley

Written by ten leading experts in the field, Optical Computing cover topics such as optical bistability, optical interconnects and circuits, photorefractive devices, spatial light modulators, associative memory, and optical computer architectures.

Optical Cooling Using the Dipole Force

by André Xuereb

This thesis unifies the dissipative dynamics of an atom, particle or structure within an optical field that is influenced by the position of the atom, particle or structure itself. This allows the identification and exploration of the fundamental 'mirror-mediated' mechanisms of cavity-mediated cooling leading to the proposal of a range of new techniques based upon the same underlying principles. It also reveals powerful mechanisms for the enhancement of the radiation force cooling of micromechanical systems, using both active gain and the resonance of a cavity to which the cooled species are external. This work has implications for the cooling not only of weakly-scattering individual atoms, ions and molecules, but also for highly reflective optomechanical structures ranging from nanometre-scale cantilevers to the metre-sized mirrors of massive interferometers.

Optical Devices in Ophthalmology and Optometry: Technology, Design Principles and Clinical Applications

by Michael Kaschke Karl-Heinz Donnerhacke Michael Stefan Rill

Medical technology is a fast growing field. This new title gives a comprehensive review of modern optical technologies alongside their clinical deployment. It bridges the technology and clinical domains and will be suitable in both technical and clinical environments. It introduces and develops basic physical methods (in optics, photonics, and metrology) and their applications in the design of optical systems for use in medical technology with a special focus on ophthalmology. Medical applications described in detail demonstrate the advantage of utilizing optical-photonic methods. Exercises and solutions for each chapter help understand and apply basic principles and methods. An associated website run by the authors will include slides to facilitate the teaching/training of this material, and typical images collected by the described methods, eg videos of endoscopy or navigation, OCT, etc.

Optical Effects in Solids

by David B. Tanner

An overview of the optical effects in solids, addressing the physics of various materials and their response to electromagnetic radiation. The discussion includes metals, semiconductors, superconductors, and insulators. The book begins by introducing the dielectric function into Maxwell's macroscopic equations and finding their plane-wave solution. The physics governing the dielectric function of various materials is then covered, both classically and using basic quantum mechanics. Advanced topics covered include interacting electrons, the anomalous skin effect, anisotropy, magneto-optics, and inhomogeneous materials. Each subject begins with a connection to the basic physics of the particular solid, after which the measurable optical quantities are derived. It allows the reader to connect measurements (reflectance, optical conductivity and dielectric function) with the underlying physics of solids. Methods of analysing experimental data are addressed, making this an ideal resource for students and researchers interested in solid state physics, optics, and materials science.

Optical Engineering Science

by Stephen Rolt

A practical guide for engineers and students that covers a wide range of optical design and optical metrology topics Optical Engineering Science offers a comprehensive and authoritative review of the science of optical engineering. The book bridges the gap between the basic theoretical principles of classical optics and the practical application of optics in the commercial world. Written by a noted expert in the field, the book examines a range of practical topics that are related to optical design, optical metrology and manufacturing. The book fills a void in the literature by coving all three topics in a single volume. Optical engineering science is at the foundation of the design of commercial optical systems, such as mobile phone cameras and digital cameras as well as highly sophisticated instruments for commercial and research applications. It spans the design, manufacture and testing of space or aerospace instrumentation to the optical sensor technology for environmental monitoring. Optics engineering science has a wide variety of applications, both commercial and research. This important book: Offers a comprehensive review of the topic of optical engineering Covers topics such as optical fibers, waveguides, aspheric surfaces, Zernike polynomials, polarisation, birefringence and more Targets engineering professionals and students Filled with illustrative examples and mathematical equations Written for professional practitioners, optical engineers, optical designers, optical systems engineers and students, Optical Engineering Science offers an authoritative guide that covers the broad range of optical design and optical metrology topics and their applications.

Optical Engineering of Diamond

by James Rabeau Rich Mildren

This is the first comprehensive book on the engineering of diamond optical devices. Written by 39 experts in the field, it gives readers an up-to-date review of the properties of optical quality synthetic diamond (single crystal and nanodiamond) and the nascent field of diamond optical device engineering. Application areas covered in detail in this book include quantum information processing, high performance lasers and light sources, and bioimaging. It provides scientists, engineers and physicists with a valuable and practical resource for the design and development of diamond-based optical devices.

Optical Fiber Current and Voltage Sensors (Series in Fiber Optic Sensors)

by Klaus Bohnert

Optical Fiber Current and Voltage Sensors is the first book to provide a complete, comprehensive and up to date treatment of the domain of fiber optic and polarimetric sensors, covering fundamental operating principles, characteristics, and construction. Written by one of the most recognised experts in polarimetric sensing, Optical Fiber Current and Voltage Sensors begins by covering the fundamentals of polarized light, as well as essential sensor components. The author then goes on to outline various sensor types and their applications, with a focus on sensors for electric phenomena. The chapters then lay out the demands that sensors need to meet, the technical obstacles and limitations which need to be considered. The book also covers comparisons to corresponding traditional instruments, as well as covering alternative non-conventional sensors. This book will be of interest to a broad audience of prospective readers ranging from graduate research students, to researchers in physics and engineering fields, to industry professionals active in the field who wish to learn about the technology and/or are interested in the development of new commercial solutions based on polarimetric-type fiber sensing as well as their use for high voltage current and voltage sensing.

Optical Fiber Sensing Technologies: Principles, Techniques and Applications

by Shuang Wang Kun Liu Tiegen Liu Junfeng Jiang

Optical Fiber Sensing Technologies Explore foundational and advanced topics in optical fiber sensing technologies In Optical Fiber Sensing Technologies: Principles, Techniques, and Applications, a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing. The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge. Ideal for anyone seeking to further the boundaries of the science of optical fiber sensing or the technological applications for which these techniques are used, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications also includes: Thorough introductions to optical fiber and optical devices, as well as optical fiber Bragg grating sensing technology Practical discussions of Extrinsic-Fabry-Perot-Interferometer-based optical fiber sensing technology, acoustic sensing technology, and high-temperature sensing technology Comprehensive explorations of assemble free micro-interferometer-based optical fiber sensing technology In-depth examinations of optical fiber intra-cavity laser gas sensing technology Perfect for applied and semiconductor physicists, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications is also an invaluable resource for professionals working in the semiconductor, optical, and sensor industries, as well as materials scientists and engineers for measurement and control.

Refine Search

Showing 51,976 through 52,000 of 85,016 results