Browse Results

Showing 55,776 through 55,800 of 85,571 results

Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses

by Amarjit Basra

As agriculture becomes more mechanized and science increases the possibilities for using inputs to enhance production, the role of PGRs becomes more vital. Plant Growth Regulators in Agriculture and Horticulture provides agriculture professionals and researchers with the information needed to effectively tap these versatile resources to enhance crop production.Through discussions of the “classical five” phytohormones--gibberellins, cytokinins, ethylene, abscisic acid, and auxins--and the growing number of nontraditional PGRs such as oligosaccharins and brassinosteroids, Plant Growth Regulators in Agriculture and Horticulture reviews past and present uses of PGRs in managing crop yield and offers some speculation on future directions.Detailed discussions on the use of PGRs in, for example, grain, ornamental, and citrus crops, introduce readers to strategies for enhancing crop quantity and quality, for improving the postproduction quality of life of perishable plants, and for crop load management, respectively. The book also includes informative visuals, such as tables of common, chemical, and trade names of different commercially available PGRs; diagrams of various PGR processes; as well as before-and-after pictures illustrating the effects of PGRs.Plant Growth Regulators in Agriculture and Horticulture is a comprehensive text covering the role of plant growth regulators in: root formation manipulating yield potential plant stress protection ornamental horticulture postharvest life of ornamentals manipulating fruit development and storage quality citriculture reducing fruit drop bloom-thinning strategiesIf the history of agriculture, which is over 10,000 years old, was condensed into a twenty-four-hour span, science-based plant breeding would be only about fifteen minutes old. Still, the role of PGRs in agriculture is modest compared to other agrochemicals, such as fungicides, herbicides, and insecticides. Plant Growth Regulators in Agriculture and Horticulture is an invaluable guide to the varied roles filled by PGRs in the attainment of higher-quality, better-yielding crops.

Plant Growth Regulators in Tropical and Sub-tropical Fruit Crops

by Prof. Dr. S. N. Ghosh

Plant growth regulators or plant bio-regulators have emerged as a powerful tool for improving the performance of horticultural crops in general and fruit crops in particular. This book provided recent information on role of plant hormones, how their concentrations are regulated, and how they modulate the various plant processes. ‘Plant Growth Regulators in Tropical, Sub-tropical Fruit Crops’ is a comprehensive book covering function of plant growth regulators in propagation including micro-propagation, growth, flowering and fruiting behaviour, yield, quality, shelf life and stress management etc. This book has 26 chapters covering most of the tropical and sub-tropical fruit crops like aonla, avocado, banana, ber, citrus, custard apple, date palm, fig, grape, guava, jamun, kokam, litchi, mango, mulberry, papaya, passion fruit, sapota, phalsa, pomegranate and strawberry. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.

Plant Growth Regulators to Manage Biotic and Abiotic Stress in Agroecosystems

by Kamel A. Abd-Elsalam Heba I. Mohamed

Plant Growth Regulators to Manage Biotic and Abiotic Stress in Agroecosystems is a comprehensive book that explores the use of plant growth regulators (PGRs) as effective stress-reduction techniques in agricultural environments. This book investigates the role of PGRs in handling biotic and abiotic stressors, offering useful insights to agriculturalists, researchers, and students. The book provides a comprehensive overview of many PGRs, including their methods of action and impacts on plant growth and development. It describes the use of PGRs to treat plant diseases caused by pathogens such as fungi, bacteria, and viruses. The book also discusses the application of PGRs to improve plant tolerance to adverse climatic circumstances including drought, salt, and extreme temperatures. The authors also underline PGRs' sustainable and environmentally friendly character, which makes them a potential option for chemical therapies. They explore PGRs' potential to improve agricultural yield and resilience, therefore helping food security in a rapidly changing global environment. This book is an excellent resource for learning about the applications and advantages of PGRs in modern agriculture.

Plant Growth Regulators: Resilience for Sustainable Agriculture

by Shamsul Hayat Mohammad Faizan

This edited book focuses on plant growth regulator synthesis, potential applications, stress tolerance mechanisms and preservations. It explores the recently registered molecules strigolactones, karrikins, and hemin-mediated regulation of plant biology. Chapters cover the integration of plant hormones in the biological system as an opportunity for sustainable agriculture. This book explores the latest information on plant growth regulators covering both theoretical and practical aspects. Plant growth regulators are organic chemical compounds that alter or regulate the metabolism in plants. In plants, plant growth regulators play the role of biostimulants that can enhance resistance to stress. Plant growth regulators in low concentrations often lead to vital improvements and high yields in crop plants. Plant growth regulators are involved in several physiological, morphological, and biochemical mechanisms associated with plant growth, development and defence againststresses. This book brings together the latest research work on plant growth regulators and their emerging importance. The book is a useful read for students, researchers, and instructors in the field of plant biology.

Plant Growth Regulators: Signalling under Stress Conditions

by Khalid Rehman Hakeem Tariq Aftab

Agriculture faces many challenges to fulfil the growing demand for sustainable food production and ensure high-quality nutrition for a rapidly growing population. To guarantee adequate food production, it is necessary to increase the yield per area of arable land. A method for achieving this goal has been the application of growth regulators to modulate plant growth. Plant growth regulators (PGRs) are substances in specific formulations which, when applied to plants or seeds, have the capacity to promote, inhibit, or modify physiological traits, development and/or stress responses. They maintain proper balance between source and sink for enhancing crop yield. PGRs are used to maximize productivity and quality, improve consistency in production, and overcome genetic and abiotic limitations to plant productivity. Suitable PGRs include hormones such as cytokinins and auxins, and hormone-like compounds such as mepiquat chloride and paclobutrazol. The use of PGRs in mainstream agriculture has steadily increased within the last 20 years as their benefits have become better understood by growers. Unfortunately, the growth of the PGR market may be constrained by a lack of innovation at a time when an increase in demand for new products will require steady innovation and discovery of novel, cost-competitive, specific, and effective PGRs.A plant bio-stimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content. Apart from traditional PGRs, which are mostly plant hormones, there are a number of substances/molecules such as nitric oxide, methyl jasmonate, brassinosteroids, seaweed extracts, strigolactones, plant growth promoting rhizobacteria etc. which act as PGRs. These novel PGRs or bio-stimulants have been reported to play important roles in stress responses and adaptation. They can protect plants against various stresses, including water deficit, chilling and high temperatures, salinity and flooding. This book includes chapters ranging from sensing and signalling in plants to translational research. In addition, the cross-talk operative in plants in response to varied signals of biotic and abiotic nature is also presented. Ultimately the objective of this book is to present the current scenario and the future plan of action for the management of stresses through traditional as well as novel PGRs. We believe that this book will initiate and introduce readers to state-of-the-art developments and trends in this field of study.

Plant Growth Responses for Smart Agriculture: Prospects and Applications

by T. Girija

Plant Physiology is a dynamic science which goes on adding knowledge to already characterized basic processes in plants. The past decade has witnessed an unprecedented progress in biological sciences with the advent of innovative technologies viz. recombinant DNA techniques, omics approaches and advanced phenotyping platforms. These tools have helped to redefine many of the already accepted facts of plant life. The present publication will give an insight into the lesser known signals that can influence plant growth and development. Knowledge of plant physiological processes provides the base for research in cognate disciplines such as crop improvement, crop production and crop protection. With the impetus for clean cultivation, information provided in the book can motivate researchers in developing environment-friendly and non-chemical means of improving crop production and activate the innate ability of the plant to enhance their field performance. Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.

Plant Growth and Health Promoting Bacteria

by Dinesh K. Maheshwari

To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.

Plant Growth and Leaf-Applied Chemicals

by Peter M. Neumann

The aim of this volume is to provide a compendium of state of the art overview chapters by leading research, from diverse scientific fields, who share a common involvement in understanding and utilizing the interactions between chemicals and plant leaves.

Plant Growth and Stress Physiology (Plant in Challenging Environments #3)

by Dharmendra K. Gupta José Manuel Palma

​This book aims to emphasize on basic concepts of plant growth, acclimation, and their adaptation to environment in changing conditions. The book will provide an updated perspective on the physical/mechanical stress, including biotic and abiotic stress, and induced responses in higher plants. This volume will also include a view of the stress recognition by plants and the cell signaling events triggered as a consequence, and will also address an appraisal of the plant oxidative stress metabolism under those circumstances. The book will explore how soil minerals and microbes are affecting plant growth, including elicitors and novel compounds which stimulate plant growth and the defence mechanisms issued by plants. This volume will also cover an overview on the enzymes which may regulate plant growth, as well as the evidences of the involvement of phytohormones and other signalling molecules in plant growth.

Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

by Kamel A. Abd-Elsalam Heba I. Mohamed Hossam El-Din Saad El-Beltagi

Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems.This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.

Plant Gum Exudates of the World: Sources, Distribution, Properties, and Applications

by Amos Nussinovitch

Considered magicians of the ingredient world, gums (hydrocolloids) are used in a variety of food applications. They possess excellent thickening, binding, emulsifying, suspension, and viscosity properties. The first comprehensive reference produced on gums in 60 years, this work is organized by taxonomy. Each entry contains the botanical name and synonyms of the tree from which it is exuded, common names, geographic distribution, chemical characteristics and structural features, physical properties, and industrial and food applications. The uses of other parts of the trees from which the gums originate are also detailed. Entries are illustrated with color photos and line drawings.

Plant Health Under Biotic Stress: Volume 1: Organic Strategies

by Rizwan Ali Ansari Irshad Mahmood

The current scenario of increasing sensitivity towards the sustainable agriculture has given a large space to extensively utilize natural resources that are environmental friendly and are a good replacement of chemicals in agriculture. Application of organic additives in the sustainable disease management can provide new insight in sustenance of plant productivity along with improved host stress tolerance. In the present book we have focussed upon a range of organic strategies to control plant pathogens of wide spectrum in addition to maintaining robust plant health. A detailed account on the application of organic additives has been discussed, irrespective of their origin and nature. In addition, the methods of utilising these organic supplements in the management of plant diseases and promotion of plant yield in more economic way have also been presented with reference to developing, underdeveloped and developed countries. The book has included the works of eminent scholars from across the world thus flashing light on the key literature related to application of organic matters including phytoextracts, chopped leaves, composted organic manures and liquid manures in eco-friendly agriculture. The mechanisms underlying the effectiveness of these organic amendments in promoting plant health has also been presented and discussed in understandable ways.

Plant Health Under Biotic Stress: Volume 2: Microbial Interactions

by Rizwan Ali Ansari Irshad Mahmood

The book illustrates the use of putative microbial agents which provide good protection to the plant from biotic pathogens attack. An up to date knowledge on plant-microbiome interaction strategies in terms of improved sustainability has been discussed. Information from experts across the globe on the application of microbes for providing amicable solution in sustainable agriculture has been gathered. In addition, information related to microbes mediated resistance levels leading to enhanced plant health has been well presented. The chapters have emphasised the use of Plant Growth Promoting Rhizobacteria (PGPR) and other potential biocontrol agents/antagonists in the management of plant diseases which provide extensive information to the readers. Literature on microbial root colonization, plant growth promotions, and also on the protection of plants from attack of various soil borne pathogens have been presented in a coherent way. Information on the application of potential strain of the bio-control fungi, endophytes, actinomycetes strengthening the plants ability which rescue the plant from pathogens attack leading to improved plant health has also been underpinned.

Plant High-Throughput Phenotyping and Functional Phenomics

by Jen-Tsung Chen

This book provides a series of comprehensive summaries highlighting the emerging achievements in the fields of plant high‑throughput phenotyping that leads to constructing functional phenomics, one of the essential components of plant functional genomics. It presents broad aspects of methods, applications, and future directions. It offers an efficient way for readers to overview this crucial topic to realize the concept as a whole, to advance the design of their future experiments, and to inspire the exploration of the knowledge, which eventually leads to better crop development in the future by scientists, plant biologists, and crop breeders. It covers advanced tools for studying functional phenomics, including artificial intelligence, imaging, remote sensing, robotics, and aerial vehicle technologies, to empower crop speed breeding, particularly in the development of stress‑tolerant future crops. The knowledge of this book supports the Sustainable Development Goals (SDGs) of the United Nations to develop climate‑smart and sustainable agriculture for achieving zero hunger globally.

Plant Holobiome Engineering for Climate-Smart Agriculture (Sustainable Plant Nutrition in a Changing World)

by R. Z. Sayyed Noshin Ilyas

This edited volume is an inclusive collection of information on crop holobiome, their function and diversity, the plausible role of soil microbes in crop growth, protection from pathogens and stresses, the use of resilient microbiomes for changing climate, and the use of new technologies to study plant-insect-microbe molecular interactions in agricultural systems. Holobiomes provide information about both plants and their microbiomes, which gives a more comprehensive insight, particularly for changing climatic scenarios. By optimizing the crop holobime function crop productivity and plant health can be enhanced manifold. This book deep dives into the numerous ways in which holobiome supports the improving plant health, nutrient uptake, disease control, and stress resistance in major food crops. It helps researchers, academicians, agri-entrepreneurs, and technologists understand the structure and function of holobiomes in crop growth, health, stress tolerance under climatic changes, and holobiome diversity and evolution. The book is also helpful in designing new dimensions in the holobiome research and development of new products and technologies. This volume is of interest and useful to agriculture scientists, microbiologists, ecologists, and is a valuable source of reference to researchers and students.

Plant Hormone Protocols

by Gregory A. Tucker Jeremy A. Roberts

Established investigators from around the world describe in step-by-step detail their best techniques for the study of plant hormones and their regulatory activities. These state-of-the-art methods include contemporary approaches to identifying the biosynthetic pathways of plant hormones, monitoring their levels, characterizing the receptors with which they interact, and analyzing the signaling systems by which they exert their effects. Comprehensive and fully detailed for reproducible laboratory success, Plant Hormone Protocols offers plant biologists an indispensable compendium of today's most powerful methods and strategies to studying plant hormones, their regulation, and their activities.

Plant Hormone Signaling Systems in Plant Innate Immunity

by P. Vidhyasekaran

Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.

Plant Hormones

by Dario Bonetta Sean Cutler

The last ten years have witnessed a monumental increase in our understanding of plant hormones. A decade ago, scientists were forced to rely on vague ideas about hormone action; today, these have been replaced by detailed molecular models. Given the rapid increase in our understanding of plant hormone biology, this comprehensive review could not have come at a better time. In Plant Hormones: Methods and Protocols, Second Edition, expert researchers explore the most current genetic, biochemical, analytical and chemical biological approaches for understanding plant hormone action, providing a concise overview of methods and reagents needed to dissect plant signalling pathways using chemical genetic methods. Chapters address such topics as genetic methods of analysis using the model system Arabidopsis thaliana, biochemical methods for documenting interactions between hormones and receptors, the use of high-throughput sequencing technologies for microRNA analysis, and analytical approaches for measuring endogenous plant hormone levels, including LC-MS and GC-MS based methods. Composed in the highly successful Methods in Molecular BiologyTM series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Innovative and cutting edge, Plant Hormones: Methods and Protocols, Second Edition is an essential guide for all plant scientists who are facing the complex and challenging questions that will determine the future of this vital field.

Plant Hormones

by Michael Sauer Jürgen Kleine-Vehn

This volume aims to present a representative cross-section of modern experimental approaches relevant to Plant Hormone Biology, ranging from relatively simple physiological to highly sophisticated methods. Chapters describe physiological, developmental, microscopy-based techniques, measure hormone contents, and heterologous systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Plant Hormones:Methods and Protocols, Third Edition aims to provide researchers with useful methods to advance their research.

Plant Hormones and Climate Change

by Golam Jalal Ahammed Jingquan Yu

This book provides new insights into the mechanisms of plant hormone-mediated growth regulation and stress tolerance covering the most recent biochemical, physiological, genetic, and molecular studies. It also highlights the potential implications of plant hormones in ensuring food security in the face of climate change. Each chapter covers particular abiotic stress (heat stress, cold, drought, flooding, soil acidity, ozone, heavy metals, elevated CO2, acid rain, and photooxidative stress) and the versatile role of plant hormones in stress perception, signal transduction, and subsequent stress tolerance in the context of climate change. Some chapters also discuss hormonal crosstalk or interaction in plant stress adaptation and highlight convergence points of crosstalk between plant hormones and environmental signals such as light, which are considered recent breakthrough studies in plant hormone research. As exogenous application or genetic manipulation of hormones can alter crop yield under favorable and/or unfavorable environmental conditions, the utilization of plant hormones in modern agriculture is of great significance in the context of global climate change. Thus, it is important to further explore how hormone manipulation can secure a good harvest under challenging environmental conditions. This volume is dedicated to Sustainable Development Goals (SDGs) 2 and 13. The volume is suitable for plant science-related courses, such as plant stress physiology, plant growth regulators, and physiology and biochemistry of phytohormones for undergraduate, graduate, and postgraduate students at colleges and universities. The book can be a useful reference for academicians and scientists involved in research related to plant hormones and stress tolerance.

Plant Hormones under Challenging Environmental Factors

by Golam Jalal Ahammed Jing-Quan Yu

This book presents recent advances in understanding the physiological and molecular mechanisms of different abiotic stresses such as high or low temperature, salinity, drought, flooding, soil acidity, heavy metals, light stress and ozone stress, and discusses the multifaceted role of phytohormones in stress adaptation and the underlying mechanisms. Aimed at students and researchers in the field of plant science, it offers a comprehensive overview of the versatile roles and interactions of different phytohormones in response to a specific stress factor and examines the possible physiological and molecular mechanisms that have been the subject of recent research.

Plant Image Analysis: Fundamentals and Applications

by S. Dutta Gupta Yasuomi Ibaraki

The application of imaging techniques in plant and agricultural sciences had previously been confined to images obtained through remote sensing techniques. Technological advancements now allow image analysis for the nondestructive and objective evaluation of biological objects. This has opened a new window in the field of plant science. Plant Image

Plant Immunity

by John M. Mcdowell

A great deal of effort is being invested in understanding the molecular mechanisms through which plants interact with pathogenic microbes. In Plant Immunity: Methods and Protocols, expert researchers in the field describe emerging technologies that can be applied to the most significant outstanding questions faced by scientists studying immunity in plants. The technologies in this detailed volume include methods for examining protein localization, protein complex purification, protein-protein interactions, transient and inducible gene expression, chromatin immunoprecipitation, microaspiration, laser microdissection, purification of fungal haustoria, and genetic manipulation of bacterial and oomycete pathogens. These techniques are applicable to a wide range of topics, including molecular functionality of NB-LRR proteins and other immune signaling components, and functional characterization of effector proteins and other pathogen components that sabotage host immunity. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.

Plant Innate Immunity Signals and Signaling Systems: Bioengineering and Molecular Manipulation for Crop Disease Management (Signaling and Communication in Plants #0)

by P. Vidhyasekaran

The volume III of the book presents the ways and means to manipulate the signals and signaling system to enhance the expression of plant innate immunity for crop disease management. It also describes bioengineering approaches to develop transgenic plants expressing enhanced disease resistance using plant immunity signaling genes. It also discusses recent commercial development of biotechnological products to manipulate plant innate immunity for crop disease management. Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most of the attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. Recently several bioengineering and molecular manipulation technologies have been developed to activate the ‘sleeping’ plant innate immune system, which has potential to detect and suppress the development of a wide range of plant pathogens in economically important crop plants. Enhancing disease resistance through altered regulation of plant immunity signaling systems would be durable and publicly acceptable. Strategies for activation and improvement of plant immunity aim at enhancing host’s capability of recognizing invading pathogens, boosting the executive arsenal of plant immunity, and interfering with virulence strategies employed by microbial pathogens. Major advances in our understanding of the molecular basis of plant immunity and of microbial infection strategies have opened new ways for engineering durable resistance in crop plants.

Plant Innate Immunity: Methods and Protocols (Methods in Molecular Biology #1991)

by Walter Gassmann

The volume presents valuable methods that look at important biological processes not traditionally assayed in the study of plant immunity, and at non-model systems. The chapters in this book cover topics such as identifying host targets of acetylating effectors by immunoprecipitation; quantifying ATP release from plant cells; protein-DNA interactions; DNA methylation; measurement and playback of leaf vibrations; natural infection routes of Xanthomonas campestris pv. campestris using Arabidopsis; and isolating favorable plant-growth-promoting bacteria from the phytosphere. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and thorough, Plant Innate Immunity: Methods and Protocols is an essential resource for all researchers interested in expanding their knowledge and learning new techniques in this ever-growing field.

Refine Search

Showing 55,776 through 55,800 of 85,571 results