- Table View
- List View
Polymer Libraries
by Dean C. Webster Michael A. MeierMeier/Webster: General Aspects of Polymer Libraries. - Schubert: Polyoxazoline Libraries and/or the General. - Fasolka: Gradient Methods for Polymer Libraries, Including their Microfluidic Polymerization Methods. - Becker: Bioactive Libraries. - Adams: The Computer-Aided Design of Polymers.
Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications
by Amos NussinovitchThe use of hydrocolloid (water-soluble polymer) beads is on the rise in many fields. A book that covers both past and new applications for hydrocolloid beads, their properties, and how to deliberately change them, is crucial. Currently there are only chapters in a handful of books covering these topics; there are no books fully devoted to them. Water-Soluble Polymer Beads: Fundamentals and Applications fills this void. This book describes all methods of bead production and techniques to change and to estimate their physical and chemical properties. A full description of past and recent developments and applications of beads in the fields of agriculture, biotechnology, environmental studies, medicine and food are presented.
Polymer Materials
by Kwang-Sup Lee Shiro Kobayashi-On the Mechanisms Leading to Exfoliated Nanocomposites Prepared by Mixing By C. D. Han -Phase Behavior and Phase Transitions in AB- and ABA-type Microphase-Separated Block Copolymers By J. K. Kim, C. D. Han -New Class Materials of Organic-Inorganic Hybridized Nanocrystals/Nanoparticles, and Their Assembled Microand Nano-Structure Toward Photonics By H. Oikawa, T. Onodera, A. Masuhara, H. Kasai, H. Nakanishi -Poly(substituted Methylene) Synthesis: Construction of C-C Main Chain from One Carbon Unit By E. Ihara
Polymer Materials: Macroscopic Properties and Molecular Interpretations
by Francoise Laupretre Lucien Monnerie Jean Louis HalaryAdvanced reviews for Polymer Materials "Molecular modeling of polymers ... is a subject that cannot be found in any other [book] in any appreciable detail. ... [T]he detailed chapters on specific polymer systems is a great idea." — Gregory Odegard, Michigan Technological University "The polymer community needs a text book which can connect the macroscopic mechanics with mesoscopic and molecular aspects of polymer." — Liangbin Li, University of Science and Technology of China This book takes a unique, multi-scale approach to the mechanical properties of polymers, covering both the macroscopic and molecular levels unlike any other book on the market. Based on the authors’ extensive research and writing in the field, Polymer Materials emphasizes the relationships between the chemical structure and the mechanical behavior of polymer materials, providing authoritative guidelines for assessing polymer performance under different conditions and the design of new materials. Key features of this book include: Experimental results on selected examples precede and reinforce the development of theoretical features In-depth discussions of a limited number of polymer systems instead of a brief overview of many Self-contained chapters with a summary of their key points Comprehensive problems and a solutions manual for the different parts of the book Coverage of the basics with an emphasis on polymer dynamics An indispensable resource for polymer scientists and students alike, Polymer Materials is also highly useful for material scientists, engineers, chemists, and physicists in industry and academia.
Polymer Mechanochemistry
by Roman BoulatovThe series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Polymer Melt Fracture
by Rudy Koopmans Jaap Den Doelder Jaap MolenaarThe continually growing plastics market consists of more than 250 million tons of product annually, making the recurring problem of polymer melt fracture an acute issue in the extrusion of these materials. Presenting a pictorial library of the different forms of melt fracture and real industrial extrusion melt fracture phenomena, Polymer Melt Fract
Polymer Membranes for Fuel Cells
by Takeshi Matsuura Javaid ZaidiThis book offers one of the most comprehensive reviews written by a large number of experts in the field of development of polymeric membranes for polymer electrolyte membrane fuel cell (PEMFC). Readers of the book will feel tremendous enthusiasm that is caused when social necessity for alternative energy sources is combined with intellectual curiosity of researchers. The topics hence cover a very wide range, from the membranes developed in a large scale by industries to those developed in the academic laboratories. This book is unique since it is the first book exclusively dedicated for fuel cell membranes. The book is written for engineers, scientists, professors, graduate students as well as general readers in universities, research institutions and industries who are engaged in R & D.
Polymer Membranes/Biomembranes
by Wolfgang Knoll Wolfgang Peter Meier*Highest Impact Factor of all publications ranked by ISI within Polymer Science *Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts *Still valid and useful after 5 or 10 years *The electronic version is available free of charge for standing order customers at: springer. com/series/12/ Written for Research
Polymer Mixing and Extrusion Technology (Plastics Engineering Ser. #16)
by NicholasP. CheremisinoffAddressing the two major unit operations-mixing and extrusion-fundamental toprocessing elastomers and plastic materials, this reference summarizes design equationsthat can be employed effectively in scaling up product performance parameters, andcontains a thorough survey of rheological principles. In addition, the book provides awealth of practical information, relating molecular and compositional properties ofpolymers to processing characteristics and end-use properties so that engineers can selectpolymers suitable for specific equipment as well as products.Polymer Mixing and Extrusion Technology examines viscometric techniquesand demonstrates their importance to product quality assurance ... reviews design-relatedliterature/correlations and calculation procedures for mixing and extrusion ... definesneeds and precision standards for setting up a polymer processing laboratory so thatproduct quality control can be implemented in physical testing and processing research.. . plus more.Illustrated with over 200 diagrams, tables, and photographs that facilitate readers'understanding of the processes, Polymer Mixing and Extrusion Technology isan authoritative source for plastics, polymer, and chemical engineers, manufacturers ofplastics processing equipment, and advanced undergraduate and graduate students in thesedisciplines.
Polymer Modification: Principles, Techniques, and Applications (Plastics Engineering)
by John Meister"Describes new modification methods and applications for natural, synthetic, thermoplastic, and thermoset polymers that result from economic forces, commercial processes, and the latest research and development. Features chemical and physical technologies such as sulfonation, alkylation, acid/base hydrolysis, hydrogenation, stress orienting, anneal
Polymer Morphology: Principles, Characterization, and Processing
by Qipeng GuoWith a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. * Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology* Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography* Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites* Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Polymer Nanocomposites based on Inorganic and Organic Nanomaterials
by Susheel Kalia Smita Mohanty B. S. Kaith Sanjay K. NayakThis book covers all aspects of the different classes of nanomaterials - from synthesis to application. It investigates in detail the use and feasibility of developing nanocomposites with these nanomaterials as reinforcements. The book encompasses synthesis and properties of cellulose nanofibers, bacterial nanocellulose, carbon nanotubes / nanofibers, graphene, nanodiamonds, nanoclays, inorganic nanomaterials and their nanocomposites for high-end applications such as electronic devices, energy storage, structural and packaging. The book also provides insight into various modification techniques for improving the functionality of nanomaterials apart from their compatibility with the base matrix.
Polymer Nanocomposites for 3D, 4D and 5D Printing: Fundamental to Applications (Engineering Materials)
by Srikanta Moharana Subhendu Chakroborty Bibhuti B. Sahu Santosh Kumar SatpathyThis book presents a guide to polymer nanocomposites for 3D, 4D, and 5D printing, filling the gap between studies and research in the real world, and facilitating its use by engineers, technicians, and designers in their own products and projects. It introduces the reader to cutting-edge 3D, 4D, and 5D printing techniques, as well as the newest innovations in polymer-based printing materials, so that they may reap the benefits of this revolutionary technology. The book covers the fundamentals, methods, materials, and printability concerns involved in preparing polymer composites for 3D, 4D, and 5D printing. Subsequently, the most important applications are described in detail, including electrical, electronic, and biological uses, each of which has its own unique set of design, manufacturing, and processing requirements.
Polymer Nanocomposites for Energy Applications
by Sabu Thomas T. Daniel Thangadurai Ange Nzihou Manjubaashini NandhakumarPolymer Nanocomposites for Energy Applications Explore the science of polymer nanocomposites and their practical use in energy applications In Polymer Nanocomposites for Energy Applications, a team of distinguished researchers delivers a comprehensive review of the synthesis and characterization of polymer nanocomposites, as well as their applications in the field of energy. Succinct and insightful, the book explores the storage of electrical, magnetic, and thermal energy and hydrogen. It also discusses energy generation by polymer-based solar cells. Finally, the authors present a life cycle analysis of polymer nanocomposites for energy applications and provide four real-world case studies where these materials have been successfully used. Readers will also find: Thorough introductions to the origins and synthesis of polymer materials In-depth discussions of the characterization of polymeric materials, including UV-visible spectroscopy Comprehensive explorations of a wide variety of polymer material applications, including in biotechnology and for soil remediation Fulsome presentations of polymer nanocomposites and their use in energy storage systems Perfect for materials and engineering scientists and polymer chemists, Polymer Nanocomposites for Energy Applications will also earn a place in the libraries of professionals working in the chemical industry.
Polymer Nanotubes Nanocomposites: Synthesis, Properties and Applications
by Vikas MittalSince the publication of the successful first edition of the book in 2010, the field has matured and a large number of advancements have been made to the science of polymer nanotube nanocomposites (PNT) in terms of synthesis, filler surface modification, as well as properties. Moreover, a number of commercial applications have been realized. <P><P>The aim of this second volume of the book is, thus, to update the information presented in the first volume as well as to incorporate the recent research and industrial developments. This edited volume brings together contributions from a variety of senior scientists in the field of polymer nanotube composites technology to shed light on the recent advances in these commercially important areas of polymer technology. The book provides the following features: Reviews the various synthesis techniques, properties and applications of the polymer nanocomposite systems Describes the functionalization strategies for single walled nanotubes in order to achieve their nanoscale dispersion in epoxy matrices Provides insights into the multiscale modeling of the properties of PNT Provides perspectives on the electron microscopy characterization of PNT Presents an overview of the different methodologies to achieve micro-patterning of PNT Describes the recent progress on hybridization modifications of CNTs with carbon nanomaterials and their further applications in polymer nanocomposites Provides details on the foams generates with PNT Provides information on synthesis and properties of polycarbonate nanocomposite. Describes the advanced microscopy techniques for understanding of the polymer/nanotube composite interfaces and properties.
Polymer Networks '91
by K. Dušek S. I. KuchanovThis book contains the plenary lectures from international experts, which were presented during the International Conference Polymer Networks, held in Moscow, April 1991. The book covers different areas of physics and chemistry of polymer networks, generated by the formation of chemical bonds.
Polymer Physics
by Wenbing HuA molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.
Polymer Processing
by Dimitris I. Collias Donald G. BairdFundamental concepts coupled with practical, step-by-step guidanceWith its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems.This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include:Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devicesNew chapter dedicated to the recycling of thermoplastics and the processing of renewable polymersLife-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimalRheology of polymers containing fibersChapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.
Polymer Processing Instabilities: Control and Understanding (Chemical Industries)
by Savvas G. Hatzikiriakos Kalman B. MiglerPolymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase product
Polymer Reaction Engineering of Dispersed Systems: Volume I (Advances in Polymer Science #280)
by Werner PauerThe series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Polymer Reaction Engineering of Dispersed Systems: Volume II (Advances in Polymer Science #281)
by Werner PauerThe series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics.Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
Polymer Science Dictionary
by Mark AlgerThis 3rd edition of this important dictionary offers more than 12,000 entries with expanded encyclopaedic-style definitions making this major reference work invaluable to practitioners, researchers and students working in the area of polymer science and technology. This new edition now includes entries on computer simulation and modeling, surface and interfacial properties and their characterization, functional and smart polymers. New and controlled architectures of polymers, especially dendrimers and controlled radical polymerization are also covered.
Polymer Science and Technology
by Robert O. EbeweleBy consolidating into one volume the fundamentals currently covered piecemeal across several reference, this book simplifies the learning of polymer science. Its primary focus is the ultimate property of the finished polymer product. Part I explains polymer fundamentals. Part II discusses how polymers are prepared from monomers and the transformation of polymers into useful everyday articles. Part III examines the properties and applications of polymers. Polymer Science and Technology presents these aspects of the science in a readily understandable way. It emphasizes basic, qualitative comprehension of concepts, rather than their rote memorization or detailed mathematical analysis.
Polymer Supported Organic Catalysts
by Narendra Pal Singh Chauhan Sapana JadounPolymer-supported organic catalysts are largely insoluble in most reaction solvents, which allows for easy recovery and recycling of the catalysts. They are generally stable, readily available, and environmental friendly, so they have attracted the interest of many synthetic chemists in the industrial and academic fields. In this book, different types of polymer-supported catalysts based on peptides, polystyrene, polyethers, poly(acrylic acid), poly(ethylene imine), poly(2-oxazoline), poly(isobutylene), poly(norbornene), etc., as well as metals are included with their synthetic organic synthesis applications.It is believed that this work will be of interest to organic chemists, material scientists, chemical engineers, polymer scientists and technologists.
Polymer Surface Modification: Relevance To Adhesion
by K. L. MittalThis book chronicles the proceedings of the Second International Symposium on Polymer Surface Modification: Relevance to Adhesion held Newark, New Jersey, May 24--26, 1999. Polymeric materials are intrinsically not very adhesionable and this necessitates their surface treatment to enhance their adhesion characteristics to other materials. Since the first symposium on this topic, held in 1993, there has been a tremendous R&D activity in devising novel or ameliorating the existing techniques for surface modification of polymers. This volume contains a total of 32 papers, which have been rigorously peer-reviewed and suitably revised before inclusion in this volume. The book is divided into three parts as follows. Part 1: Plasma Surface Modification Techniques; Part 2: Other/Miscellaneous Surface Modification Techniques; and Part 3: General Papers. The topics covered include: plasma surface modification of a variety of polymers using various plasma gases; atmospheric plasma system; surface functionalization; ultrahydrophobic polymeric surfaces; metallization of plasma treated polymers; surface modification of polymers via molecular design for adhesion promotion; wet chemical methods for polymer surface modification; laser surface modification of various polymers; UV/ozone treatment; surface and interface studies of treated polymer surfaces by an array of techniques; bioadhesion of polymeric biomaterials to tissue; polymer-fiber systems; and plasma deposited coatings.