- Table View
- List View
Plasma Kinetic Theory (Series in Plasma Physics)
by Donald Gary SwansonDeveloped from the lectures of a leading expert in plasma wave research, Plasma Kinetic Theory provides the essential material for an introductory course on plasma physics as well as the basis for a more advanced course on kinetic theory. Exploring various wave phenomena in plasmas, it offers wide-ranging coverage of the field.After intr
Plasma Lipids and Their Role in Disease (Advances in Vascular Biology)
by Philip J. Barter Kerry-Anne RyeThis volume gives up-to-date information on plasma lipid transport, the various categories of plasma lipid disorders and the relationship between plasma lipids, lipoproteins, and atherosclerotic disease.
Plasma Medicine
by Alexander Fridman Gary FriedmanThis comprehensive text is suitable for researchers and graduate students of a 'hot' new topic in medical physics.Written by the world's leading experts, this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners.The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medical applications, the medicine to apply the technology not only in-vitro but also in-vivo testing and the biology to understand complicated bio-chemical processes involved in plasma interaction with living tissues.
Plasma Medicine
by M. Laroussi G. Morfill M. G. Kong W. StolzThe introduction of low temperature plasma technology to medical research and to the healthcare arena in general is set to revolutionise the way we cure diseases. This innovative medium offers a valid and advantageous replacement of traditional chemical-based medications. Its application in the inactivation of pathogens in particular, avoids the recurrent problem of drug resistant microorganisms. This is the first book dedicated exclusively to the emerging interdisciplinary field of plasma medicine. The opening chapters discuss plasmas and plasma chemistry, the fundamentals of non-equilibrium plasmas and cell biology. The rest of the book is dedicated to current applications, illustrating a plasma-based approach to wound healing, electrosurgery, cancer treatment and even dentistry. The text provides a clear and integrated introduction to plasma technology and has been devised to answer the needs of researchers from different communities. It will appeal to graduate students and physicists, engineers, biologists, medical doctors and biochemists.
Plasma Modification of Polyolefins: Synthesis, Characterization and Applications (Engineering Materials)
by Sabu Thomas N. S. Baneesh P. S. Sari Tatana VackovaThis book addresses plasma modification of polyolefin surfaces. It comprises 21 chapters divided into three major sections. The first section covers the different techniques used for plasma modification of polyolefin surfaces and the effects of various gases as a surrounding medium, while the second provides a detailed analysis of the physics and chemistry of plasma modification and discusses various innovative characterization techniques, as well as ageing of the modified surface. It focuses on the analysis of changes in polymers’ surface chemistry using various spectroscopic techniques, and of changes in their surface morphology after plasma treatment using optical microscopy, electron microscopy and atomic force microscopy. In addition, it provides detailed information on the characterization of modified polymer surfaces. The book’s third and last section covers a range of applications of plasma-modified polyolefin surfaces varying from the packaging industry to the biomedical field, and shares valuable insights on the lifecycle analysis of plasma modification and modified surfaces.
Plasma Nitriding of Steels
by Hossein Aghajani Sahand BehrangiThis book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods.
Plasma Physics
by Alexander PielThis book is an outgrowth of courses in plasma physics which I have taught at Kiel University for many years. During this time I have tried to convince my students that plasmas as different as gas dicharges, fusion plasmas and space plasmas can be described in a uni ed way by simple models. The challenge in teaching plasma physics is its apparent complexity. The wealth of plasma phenomena found in so diverse elds makes it quite different from atomic physics, where atomic structure, spectral lines and chemical binding can all be derived from a single equation--the Schr#65533;dinger equation. I positively accept the variety of plasmas and refrain from subdividing plasma physics into the traditional, but arti cially separated elds, of hot, cold and space plasmas. This is why I like to confront my students, and the readers of this book, with examples from so many elds. By this approach, I believe, they will be able to become discoverers who can see the commonality between a falling apple and planetary motion. As an experimentalist, I am convinced that plasma physics can be best understood from a bottom-up approach with many illustrating examples that give the students con dence in their understanding of plasma processes. The theoretical framework of plasma physics can then be introduced in several steps of re nement. In the end, the student (or reader) will see that there is something like the Schr#65533;dinger equation, namely the Vlasov-Maxwell model of plasmas, from which nearly all phenomena in collisionless plasmas can be derived.
Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy
by Bahman ZohuriThis book covers the basic principles of both fusion and plasma physics, examining their combined application for driving controlled thermonuclear energy. The author begins by explaining the underlying scientific theory, and then goes on to explore the nuances of deployment within thermonuclear reactors. The potential for these technologies to help shape the new generation of clean energy is examined in-depth, encompassing perspectives both highlighting benefits, and warning of challenges associated with the nuclear fusion pathway. The associated computer code and numerical analysis are included in the book. No prior knowledge of plasma physics or fusion is required.
Plasma Physics and Engineering
by Alexander Fridman Lawrence A. KennedyPlasma plays an important role in a wide variety of industrial processes, including material processing, environmental control, electronic chip manufacturing, light sources, and green energy, not to mention fuel conversion and hydrogen production, biomedicine, flow control, catalysis, and space propulsion. Following the general outline of the bests
Plasma Physics and Engineering
by Alexander Fridman Lawrence A. KennedyPlasma Physics and Engineering presents basic and applied knowledge on modern plasma physics, plasma chemistry, and plasma engineering for senior undergraduate and graduate students as well as for scientists and engineers working in academia; research labs; and industry with plasmas, laser and, combustion systems. This is a unique book providing a clear fundamental introduction to all aspects of modern plasma science, describing all electric discharges applied today from vacuum to atmospheric pressure and higher, from thermal plasma sources to essentially cold non-equilibrium discharges. A solutions manual is available for adopting professors, which is helpful in relevant university courses. Provides a lucid introduction to virtually all aspects of modern plasma science and technology Contains an extensive database on plasma kinetics and thermodynamics Includes many helpful numerical formulas for practical calculations, as well as numerous problems and concepts This revised edition includes new material on atmospheric pressure discharges, micro discharges, and different types of discharges in liquids Prof. Alexander Fridman is Nyheim Chair Professor of Drexel University and Director of C. & J. Nyheim Plasma Institute. His research focuses on plasma approaches to biology and medicine, to material treatment, fuel conversion, and environmental control. Prof. Fridman has almost 50 years of plasma research in national laboratories and universities of Russia, France, and the United States. He has published 8 books, and received numerous honors for his work, including Stanley Kaplan Distinguished Professorship in Chemical Kinetics and Energy Systems, George Soros Distinguished Professorship in Physics, the State Prize of the USSR, Plasma Medicine Award, Kurchatov Prize, Reactive Plasma Award, and Plasma Chemistry Award. Prof. Lawrence A. Kennedy is Dean of Engineering Emeritus and Professor of Mechanical Engineering Emeritus at the University of Illinois at Chicago and Professor of Mechanical Engineering Emeritus at the Ohio State University. His research focuses on chemically reacting flows and plasma processes. He is the author of more than 300 archival publications and 2 books, the editor of three monographs and served as Editor–in-Chief of the International Journal of Experimental Methods in Thermal and Fluid Science. Professor Kennedy was the Ralph W. Kurtz Distinguished Professor of Mechanical Engineering at OSU and the Stanley Kaplan University Scholar in Plasma Physics at UIC. Prof. Kennedy is also the recipient of numerous awards such as the American Society of Mechanical Engineers Heat Transfer Memorial Award (2008), and the Ralph Coats Roe Award from ASEE (1993). He is a Fellow of the American Society of Mechanical Engineers, the American Physical Society, the American Institute of Aeronautics and Astronautics and the American Association for the Advancement of Science.
Plasma Physics and Fusion Energy
by Jeffrey P. FreidbergThere has been an increase in interest worldwide in fusion research over the last decade due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever increasing demand for electrical energy. Based on a series of course notes from graduate courses in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding.
Plasma Physics for Controlled Fusion
by Kenro MiyamotoThisnew edition presents the essential theoretical and analytical methods needed tounderstand the recent fusion research of tokamak and alternate approaches. Theauthor describes magnetohydrodynamic and kinetic theories of cold and hotplasmas in detail. The book covers new important topics for fusion studies such as plasma transportby drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomenaof microturbulence. They can modify the onset criterion for turbulent transport,instabilities driven by energetic particles as well as alpha particlegeneration and typical plasma models for computer simulation. The fusionresearch of tokamaks with various new versions of H modes are explained. Thedesign concept of ITER, the international tokamak experimental reactor, isdescribed for inductively driven operations as well as steady-state operations using non-inductivedrives. Alternative approaches of reversed-field pinch and its relaxationprocess, stellator including quasi-symmetric system, open-end system of tandemmirror and inertial confinement are also explained. Newly added and updatedtopics in this second edition include zonal flows, various versions of H modes,and steady-state operations of tokamak, the designconcept of ITER, therelaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The bookaddresses graduate students and researchers in the field of controlled fusion.
Plasma Physics of the Local Cosmos
by Committee on Solar Space PhysicsSolar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA’s Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earth—and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.
Plasma Physics: An Introduction
by Richard FitzpatrickEncompasses the Lectured Works of a Renowned Expert in the Field Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This textbook provides a concise and cohesive introduction to plasma physics theory and offers a solid foundation for students of physics wishing to take higher level courses in plasma physics. Mathematically Rigorous, but Driven by Physics The author provides an in-depth discussion of the various fluid theories typically used in plasma physics, presenting non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. This second edition has been fully updated to include new content on collisions and magnetic reconnection. It contains over 80 exercises—carefully selected for their pedagogical value—with fully worked out solutions available in a separate solutions manual for professors. The material presents a number of applications, and works through specific topics including basic plasma parameters, the theory of charged particle motion in inhomogeneous electromagnetic fields, collisions, plasma fluid theory, electromagnetic waves in cold plasmas, electromagnetic wave propagation through inhomogeneous plasmas, kinetic theory, magnetohydrodynamical fluid theory, and magnetic reconnection.
Plasma Processing of Nanomaterials (Nanomaterials and their Applications)
by R. Mohan SankaranWe are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.
Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering
by Alexander FridmanPlasma Science and Technology An accessible introduction to the fundamentals of plasma science and its applications In Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering, distinguished researcher Dr. Alexander Fridman delivers a comprehensive introduction to plasma technology, including fulsome descriptions of the fundamentals of plasmas and discharges. The author discusses a wide variety of practical applications of the technology to medicine, energy, catalysis, coatings, and more, emphasizing engineering and science fundamentals. Offering readers illuminating problems and concept questions to support understanding and self-study, the book also details organic and inorganic applications of plasma technologies, demonstrating its use in nature, in the lab, and in both novel and well-known applications. Readers will also find: A thorough introduction to the kinetics of excited atoms and molecules Comprehensive explorations of non-equilibrium atmospheric pressure cold discharges Practical discussions of plasma processing in microelectronics and other micro-technologies Expert treatments of plasma in environmental control technologies, including the cleaning of air, exhaust gases, water, and soil Perfect for students of chemical engineering, physics, and chemistry, Plasma Science and Technology will also benefit professionals working in these fields who seek a contemporary refresher in the fundamentals of plasma science and its applications.
Plasma Science: From Fundamental Research to Technological Applications
by Panel on Opportunities in Plasma Science TechnologyPlasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.
Plasma Simulations by Example
by Lubos BriedaThe study of plasmas is crucial in improving our understanding of the universe, and they are being increasingly utilised in key technologies such as spacecraft thrusters, plasma medicine, and fusion energy. Providing readers with an easy to follow set of examples that clearly illustrate how simulation codes are written, this book guides readers through how to develop C++ computer codes for simulating plasmas primarily with the kinetic Particle in Cell (PIC) method. This text will be invaluable to advanced undergraduates and graduate students in physics and engineering looking to learn how to put the theory to the test. Features: Provides a step-by-step introduction to plasma simulations with easy to follow examples Discusses the electrostatic and electromagnetic Particle in Cell (PIC) method on structured and unstructured meshes, magnetohydrodynamics (MHD), and Vlasov solvers Covered topics include Direct Simulation Monte Carlo (DSMC) collisions, surface interactions, axisymmetry, and parallelization strategies. Lubos Brieda has over 15 years of experience developing plasma and gas simulation codes for electric propulsion, contamination transport, and plasma-surface interactions. As part of his master’s research work, he developed a 3D ES-PIC electric propulsion plume code, Draco, which is to this date utilized by government labs and private aerospace firms to study plasma thruster plumes. His Ph.D, obtained in 2012 from George Washington University, USA, focused on a multi-scale model for Hall thrusters utilizing fluid-kinetic hybrid PIC codes. He has since then been involved in numerous projects involving development and the use of plasma simulation tools. Since 2014 he has been teaching online courses on plasma simulations through his website: particleincell.com.
Plasma Surface Modification of Polymers: Relevance to Adhesion
by M. Strobel C.S. Lyons and K.L. MittalThis book is a collection of invited papers (previously published in special issues of the Journal of Adhesion Science and Technology) written by internationally recognized researchers actively working in the field of plasma surface modification. It provides a current, comprehensive overview of the plasma treatment of polymers. In contrast to plasm
Plasma Technology in the Preservation and Cleaning of Cultural Heritage Objects
by Radko Tiňo Katarína Vizárová František Krčma Milena Reháková Viera Jančovičová Zdenka KozákováScientists have long been looking for alternative methods for the cleaning of historical and cultural museum objects as conventional methods often fail to completely remove surface films, leaving contamination and surface residues behind. Low-temperature plasmas have recently been found to provide a new, efficient and durable approach that maintains the safety of both the materials and personnel. This book is the first to introduce the emerging use of low-temperature plasmas in the cleaning and decontamination of cultural heritage items. It provides a comprehensive exploration of the new possibilities of cleaning objects with plasma, before providing a practice guide to the individual cleaning methods and an overview of the technologies and conditions used in the different cleaning regimes. It is an ideal reference for researchers in plasma physics, in addition to professionals working in the field of historical and cultural conservation. Features: Provides a thorough overview of the cleaning potential of emerging plasma technologies in accessible language for professional restorers and conservators without a scientific background Includes the latest case studies from the field, which have not been published elsewhere yet Authored by a team of experts in the field
Plasma Theory: An Advanced Guide for Graduate Students
by Vladimir RozhanskyThis textbook, based on the author’s classroom-tested lecture course, helps graduate students master the advanced plasma theory needed to unlock results at the forefront of current research. It is structured around a two semester course, beginning with kinetic theory and transport processes, while the second semester is devoted to plasma dynamics, including MHD theory, equilibrium, and stability. More advanced problems such as neoclassical theory, stochastization of the magnetic field lines, and edge plasma physics are also considered, and each chapter ends with an illustrative example which demonstrates a concrete application of the theory. The distinctive feature of this book is that, unlike most other advanced plasma science texts, phenomena in both low and high temperature plasma are considered simultaneously so that theory of slightly ionized and fully ionized plasmas is presented holistically. This book will therefore be ideal as a classroom text or self-study guide for a wide cohort of graduate students working in different areas like nuclear fusion, gas discharge physics, low temperature plasma applications, astrophysics, and more. It is also a useful reference for more seasoned researchers.
Plasma Turbulence in the Solar System
by Yasuhito NaritaDynamics of astrophysical systems is often described by plasma physics, yet understanding the nature of plasma turbulence remains as a challenge in physics in both theories and experiments. This book is an up-to-date summary and review of recent results in research on waves and turbulence in near-Earth space plasma turbulence, obtained by Cluster, the multi-spacecraft mission. Spatial and temporal structures of solar wind turbulence as well as its interaction with the bow shock ahead of the Earth are presented using Cluster data. The book presents (1) historical developments, (2) theoretical background of plasma physics, turbulence theories, and the plasma physical picture of the solar system, (3) analysis methods for multi-spacecraft data, (4) results of Cluster data analysis, and (5) impacts on astrophysics and Earth sciences.
Plasma Waves (Series in Plasma Physics)
by Donald Gary SwansonExtended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.
Plasma and Fluid Turbulence: Theory and Modelling
by A. Yoshizawa S.I. Itoh K. ItohTheory and modelling with direct numerical simulation and experimental observations are indispensable in the understanding of the evolution of nature, in this case the theory and modelling of plasma and fluid turbulence. Plasma and Fluid Turbulence: Theory and Modelling explains modelling methodologies in depth with regard to turbulence phenomena a
Plasma and Spot Phenomena in Electrical Arcs (Springer Series on Atomic, Optical, and Plasma Physics #113)
by Isak BeilisThis book is devoted to a thorough investigation of the physics and applications of the vacuum arc – a highly-ionized metallic plasma source used in a number of applications – with emphasis on cathode spot phenomena and plasma formation. The goal is to understand the origins and behavior of the various complex and sometimes mysterious phenomena involved in arc formation, such as cathode spots, electrode vaporization, and near-electrode plasma formation. The book takes the reader from a model of dense cathode plasma based on charge-exchange ion-atom collisions through a kinetic approach to cathode vaporization and on to metal thermophysical properties of cathodes. This picture is further enhanced by an in-depth study of cathode jets and plasma acceleration, the effects of magnetic fields on cathode spot behavior, and electrical characteristics of arcs and cathode spot dynamics. The book also describes applications to space propulsion, thin film deposition, laser plasma generation, and magnetohydrodynamics, making this comprehensive and up-to-date volume a valuable resource for researchers in academia and industry.