Browse Results

Showing 66,651 through 66,675 of 84,457 results

Stations in the Field: A History of Place-Based Animal Research, 1870-1930

by Raf De Bont

When we think of sites of animal research that symbolize modernity, the first places that come to mind are grand research institutes in cities and near universities that house the latest in equipment and technologies, not the surroundings of the bird’s nest, the octopus’s garden in the sea, or the parts of inland lakes in which freshwater plankton reside. Yet during the late nineteenth and early twentieth centuries, a group of zoologists began establishing novel, indeed modern ways of studying nature, propagating what present-day ecologists describe as place-based research. Raf De Bont’s Stations in the Field focuses on the early history of biological field stations and the role these played in the rise of zoological place-based research. Beginning in the 1870s, a growing number of biological field stations were founded--first in Europe and later elsewhere around the world--and thousands of zoologists received their training and performed their research at these sites. Through case studies, De Bont examines the material and social context in which field stations arose, the actual research that was produced in these places, the scientific claims that were developed there, and the rhetorical strategies that were deployed to convince others that these claims made sense. From the life of parasitic invertebrates in northern France and freshwater plankton in Schleswig-Holstein, to migratory birds in East Prussia and pest insects in Belgium, De Bont’s book is fascinating tour through the history of studying nature in nature.

Stations in the Field: A History of Place-Based Animal Research, 1870-1930

by Raf De Bont

When we think of sites of animal research that symbolize modernity, the first places that come to mind are grand research institutes in cities and near universities that house the latest in equipment and technologies, not the surroundings of the bird’s nest, the octopus’s garden in the sea, or the parts of inland lakes in which freshwater plankton reside. Yet during the late nineteenth and early twentieth centuries, a group of zoologists began establishing novel, indeed modern ways of studying nature, propagating what present-day ecologists describe as place-based research. Raf De Bont’s Stations in the Field focuses on the early history of biological field stations and the role these played in the rise of zoological place-based research. Beginning in the 1870s, a growing number of biological field stations were founded—first in Europe and later elsewhere around the world—and thousands of zoologists received their training and performed their research at these sites. Through case studies, De Bont examines the material and social context in which field stations arose, the actual research that was produced in these places, the scientific claims that were developed there, and the rhetorical strategies that were deployed to convince others that these claims made sense. From the life of parasitic invertebrates in northern France and freshwater plankton in Schleswig-Holstein, to migratory birds in East Prussia and pest insects in Belgium, De Bont’s book is fascinating tour through the history of studying nature in nature.

Stationäre Gasturbinen (VDI-Buch)

by Christof Lechner Jörg Seume

Das Handbuch bietet das aktuelle Wissen über stätionäre Gasturbinen in Industrie und Forschung. In fast vierzig Kapiteln werden die Grundlagen aufbereitet und der derzeitige technische Stand beschrieben. Die Herausgeber – beide blicken auf eine langjährige Industrieerfahrung zurück – haben viele namhafte Autoren gewonnen, die Fragen der Qualität, des Betriebs und der Wartung von Gasturbinen aus der täglichen Praxis kennen. Neu in der 2. Auflage sind Kapitel über Aeroderivate sowie über Ferndiagnosen.

Statistical Analysis Techniques in Particle Physics: Fits, Density Estimation and Supervised Learning

by Frank C. Porter Ilya Narsky

Modern analysis of HEP data needs advanced statistical tools to separate signal from background. This is the first book which focuses on machine learning techniques. It will be of interest to almost every high energy physicist, and, due to its coverage, suitable for students.

Statistical Analysis in Proteomics

by Klaus Jung

This valuable collection aims to provide a collection of frequently used statistical methods in the field of proteomics. Although there is a large overlap between statistical methods for the different 'omics' fields, methods for analyzing data from proteomics experiments need their own specific adaptations. To satisfy that need, Statistical Analysis in Proteomics focuses on the planning of proteomics experiments, the preprocessing and analysis of the data, the integration of proteomics data with other high-throughput data, as well as some special topics. Written for the highly successful Methods in Molecular Biology series, the chapters contain the kind of detail and expert implementation advice that makes for a smooth transition to the laboratory. Practical and authoritative, Statistical Analysis in Proteomics serves as an ideal reference for statisticians involved in the planning and analysis of proteomics experiments, beginners as well as advanced researchers, and also for biologists, biochemists, and medical researchers who want to learn more about the statistical opportunities in the analysis of proteomics data.

Statistical Analysis of Clinical Data on a Pocket Calculator

by Aeilko H. Zwinderman Ton J. Cleophas

The core principles of statistical analysis are too easily forgotten in today's world of powerful computers and time-saving algorithms. This step-by-step primer takes researchers who lack the confidence to conduct their own analyses right back to basics, allowing them to scrutinize their own data through a series of rapidly executed reckonings on a simple pocket calculator. A range of easily navigable tutorials facilitate the reader's assimilation of the techniques, while a separate chapter on next generation Flash prepares them for future developments in the field. This practical volume also contains tips on how to deny hackers access to Flash internet sites. An ideal companion to the author's co-authored works on statistical analysis for Springer such as Statistics Applied to Clinical Trials, this monograph will help researchers understand the processes involved in interpreting clinical data, as well as being a necessary prerequisite to mastering more advanced statistical techniques. The principles of statistical analysis are easily forgotten in today's world of time-saving algorithms. This step-by-step primer takes researchers back to basics, enabling them to examine their own data through a series of sums on a simple pocket calculator.

Statistical Analysis of Clinical Data on a Pocket Calculator, Part 2

by Aeilko H. Zwinderman Ton J. Cleophas

The first part of this title contained all statistical tests relevant to starting clinical investigations, and included tests for continuous and binary data, power, sample size, multiple testing, variability, confounding, interaction, and reliability. The current part 2 of this title reviews methods for handling missing data, manipulated data, multiple confounders, predictions beyond observation, uncertainty of diagnostic tests, and the problems of outliers. Also robust tests, non-linear modeling , goodness of fit testing, Bhatacharya models, item response modeling, superiority testing, variability testing, binary partitioning for CART (classification and regression tree) methods, meta-analysis, and simple tests for incident analysis and unexpected observations at the workplace and reviewed. Each test method is reported together with (1) a data example from practice, (2) all steps to be taken using a scientific pocket calculator, and (3) the main results and their interpretation. Although several of the described methods can also be carried out with the help of statistical software, the latter procedure will be considerably slower. Both part 1 and 2 of this title consist of a minimum of text and this will enhance the process of mastering the methods. Yet the authors recommend that for a better understanding of the test procedures the books be used together with the same authors' textbook "Statistics Applied to Clinical Studies" 5th edition edited 2012, by Springer Dordrecht Netherlands. More complex data files like data files with multiple treatment modalities or multiple predictor variables can not be analyzed with a pocket calculator. We recommend that the small books "SPSS for starters", Part 1 and 2 (Springer, Dordrecht, 2010, and 2012) from the same authors be used as a complementary help for the readers' benefit.

Statistical Analysis of Designed Experiments

by Ajit C. Tamhane

A indispensable guide to understanding and designing modern experimentsThe tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences.The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests.Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets.With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.

Statistical Analysis of Ecotoxicity Studies

by John W. Green Timothy A. Springer Henrik Holbech

A guide to the issues relevant to the design, analysis, and interpretation of toxicity studies that examine chemicals for use in the environment Statistical Analysis of Ecotoxicity Studies offers a guide to the design, analysis, and interpretation of a range of experiments that are used to assess the toxicity of chemicals. While the book highlights ecotoxicity studies, the methods presented are applicable to the broad range of toxicity studies. The text contains myriad datasets (from laboratory and field research) that clearly illustrate the book’s topics. The datasets reveal the techniques, pitfalls, and precautions derived from these studies. The text includes information on recently developed methods for the analysis of severity scores and other ordered responses, as well as extensive power studies of competing tests and computer simulation studies of regression models that offer an understanding of the sensitivity (or lack thereof) of various methods and the quality of parameter estimates from regression models. The authors also discuss the regulatory process indicating how test guidelines are developed and review the statistical methodology in current or pending OECD and USEPA ecotoxicity guidelines. This important guide: • Offers the information needed for the design and analysis to a wide array of ecotoxicity experiments and to the development of international test guidelines used to assess the toxicity of chemicals • Contains a thorough examination of the statistical issues that arise in toxicity studies, especially ecotoxicity • Includes an introduction to toxicity experiments and statistical analysis basics • Includes programs in R and excel • Covers the analysis of continuous and Quantal data, analysis of data as well as Regulatory Issues • Presents additional topics (Mesocosm and Microplate experiments, mixtures of chemicals, benchmark dose models, and limit tests) as well as software Written for directors, scientists, regulators, and technicians, Statistical Analysis of Ecotoxicity Studies provides a sound understanding of the technical and practical issues in designing, analyzing, and interpreting toxicity studies to support or challenge chemicals for use in the environment.

Statistical Analysis of Gene Expression Microarray Data (Chapman And Hall/crc Interdisciplinary Statistics Ser.)

by Terry Speed

Although less than a decade old, the field of microarray data analysis is now thriving and growing at a remarkable pace. Biologists, geneticists, and computer scientists as well as statisticians all need an accessible, systematic treatment of the techniques used for analyzing the vast amounts of data generated by large-scale gene expression studies

Statistical Analysis of Microbiome Data (Frontiers in Probability and the Statistical Sciences)

by Somnath Datta Subharup Guha

Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Statistical Analysis of Network Data with R

by Eric D. Kolaczyk Gábor Csárdi

Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk's book Statistical Analysis of Network Data (Springer, 2009).

Statistical Analysis of Next Generation Sequencing Data

by Somnath Datta Dan Nettleton

Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.

Statistical Analysis of Panel Count Data

by Jianguo Sun Xingqiu Zhao

Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.

Statistical Analysis of Proteomic Data: Methods and Tools (Methods in Molecular Biology #2426)

by Thomas Burger

This book explores the most important processing steps of proteomics data analysis and presents practical guidelines, as well as software tools, that are both user-friendly and state-of-the-art in chemo- and biostatistics. Beginning with methods to control the false discovery rate (FDR), the volume continues with chapters devoted to software suites for constructing quantitation data tables, missing value related issues, differential analysis software, and more. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and implementation advice that leads to successful results. Authoritative and practical, Statistical Analysis of Proteomic Data: Methods and Tools serves as an ideal guide for proteomics researchers looking to extract the best of their data with state-of-the art tools while also deepening their understanding of data analysis.

Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

by Susmita Datta Bart J. A. Mertens

This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types--as opposed to the familiar data structures in more classical genomics--but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.

Statistical Applications for Environmental Analysis and Risk Assessment

by Joseph Ofungwu

Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and "ready-made" software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes:* Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject* Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners* Software scripts using the high-powered statistical software system, R, and supplemented by USEPA's ProUCL and USDOE's VSP software packages, which are all freely available* Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples* Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.

Statistical Approach to Quantum Field Theory

by Andreas Wipf

Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an "experimental" tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as such, its style is essentially pedagogical, requiring only some basics of mathematics, statistical physics, and quantum field theory. Yet it also contains some more sophisticated concepts which may be useful to researchers in the field. Each chapter ends with a number of problems - guiding the reader to a deeper understanding of some of the material presented in the main text - and, in most cases, also features some listings of short, useful computer programs.

Statistical Approach to Quantum Field Theory: An Introduction (Lecture Notes in Physics #992)

by Andreas Wipf

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.

Statistical Approach to Wall Turbulence

by Sedat Tardu

Wall turbulence is encountered in many technological applications as well as in the atmosphere, and a detailed understanding leading to its management would have considerable beneficial consequences in many areas. A lot of inspired work by experimenters, theoreticians, engineers and mathematicians has been accomplished over recent decades on this important topic and Statistical Approach to Wall Turbulence provides an updated and integrated view on the progress made in this area. Wall turbulence is a complex phenomenon that has several industrial applications, such as in aerodynamics, turbomachinery, geophysical flows, internal engines, etc. Several books exist on fluid turbulence, but Statistical Approach to Wall Turbulence is original in the sense that it focuses solely on the turbulent flows bounded by solid boundaries. The book covers the different physical aspects of wall turbulence, beginning with classical phenomenological aspects before advancing to recent research in the effects of the Reynolds numbers, near wall coherent structures, and wall turbulent transport process. This book would be of interest to postgraduate and undergraduate students in mechanical, chemical, and aerospace engineering, as well as researchers in aerodynamics, combustion, and all applications of wall turbulence.

Statistical Approaches for Hidden Variables in Ecology

by Olivier Gimenez Nathalie Peyrard

The study of ecological systems is often impeded by components that escape perfect observation, such as the trajectories of moving animals or the status of plant seed banks. These hidden components can be efficiently handled with statistical modeling by using hidden variables, which are often called latent variables. Notably, the hidden variables framework enables us to model an underlying interaction structure between variables (including random effects in regression models) and perform data clustering, which are useful tools in the analysis of ecological data.This book provides an introduction to hidden variables in ecology, through recent works on statistical modeling as well as on estimation in models with latent variables. All models are illustrated with ecological examples involving different types of latent variables at different scales of organization, from individuals to ecosystems. Readers have access to the data and R codes to facilitate understanding of the model and to adapt inference tools to their own data.

Statistical Approaches to Gene x Environment Interactions for Complex Phenotypes

by Michael Windle

Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence -- genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use. The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions.ContributorsFatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min Zhang

Statistical Approaches to Gene x Environment Interactions for Complex Phenotypes

by Michael Windle

Diverse methodological and statistical approaches for investigating the role of gene-environment interactions in a range of complex diseases and traits. Findings from the Human Genome Project and from Genome-Wide Association (GWA) studies indicate that many diseases and traits manifest a more complex genomic pattern than previously assumed. These findings, and advances in high-throughput sequencing, suggest that there are many sources of influence—genetic, epigenetic, and environmental. This volume investigates the role of the interactions of genes and environment (G × E) in diseases and traits (referred to by the contributors as complex phenotypes) including depression, diabetes, obesity, and substance use. The contributors first present different statistical approaches or strategies to address G × E and G × G interactions with high-throughput sequenced data, including two-stage procedures to identify G × E and G × G interactions, marker-set approaches to assessing interactions at the gene level, and the use of a partial-least square (PLS) approach. The contributors then turn to specific complex phenotypes, research designs, or combined methods that may advance the study of G × E interactions, considering such topics as randomized clinical trials in obesity research, longitudinal research designs and statistical models, and the development of polygenic scores to investigate G × E interactions. Contributors Fatima Umber Ahmed, Yin-Hsiu Chen, James Y. Dai, Caroline Y. Doyle, Zihuai He, Li Hsu, Shuo Jiao, Erin Loraine Kinnally, Yi-An Ko, Charles Kooperberg, Seunggeun Lee, Arnab Maity, Jeanne M. McCaffery, Bhramar Mukherjee, Sung Kyun Park, Duncan C. Thomas, Alexandre Todorov, Jung-Ying Tzeng, Tao Wang, Michael Windle, Min Zhang

Statistical Benchmarks for Quantum Transport in Complex Systems: From Characterisation To Design (Springer Theses)

by Mattia Walschaers

This book introduces a variety of statistical tools for characterising and designing the dynamical features of complex quantum systems. These tools are applied in the contexts of energy transfer in photosynthesis, and boson sampling. In dynamical quantum systems, complexity typically manifests itself via the interference of a rapidly growing number of paths that connect the initial and final states. The book presents the language of graphs and networks, providing a useful framework to discuss such scenarios and explore the rich phenomenology of transport phenomena. As the complexity increases, deterministic approaches rapidly become intractable, which leaves statistics as a viable alternative.

Statistical Complexity

by K. D. Sen

The understanding of electron density as the carrier of all the information of a multielectronic system is implicit in the theorems of density functional theory. Information theoretical based measures giving a quantitative understanding of statistical complexity of such systems is shaping up as a new area of research in chemical physics. This book is the first monograph of its kind covering the aspects of complexity measure in atoms and molecules.

Refine Search

Showing 66,651 through 66,675 of 84,457 results