- Table View
- List View
Tensor Calculus and Applications: Simplified Tools and Techniques (Mathematics and its Applications)
by Bhaben KalitaThe aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Tensor Categories and Endomorphisms of von Neumann Algebras
by Marcel Bischoff Yasuyuki Kawahigashi Roberto Longo Karl-Henning RehrenC* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
Tensor Computation for Seismic Data Processing: Linking Theory and Practice (Earth Systems Data and Models #6)
by Feng Qian Shengli Pan Gulan ZhangThis book aims to provide a comprehensive understanding of tensor computation and its applications in seismic data analysis, exclusively catering to seasoned researchers, graduate students, and industrial engineers alike. Tensor emerges as a natural representation of multi-dimensional modern seismic data, and tensor computation can help prevent possible harm to the multi-dimensional geological structure of the subsurface that occurred in classical seismic data analysis. It delivers a wealth of theoretical, computational, technical, and experimental details, presenting an engineer's perspective on tensor computation and an extensive investigation of tensor-based seismic data analysis techniques. Embark on a transformative exploration of seismic data processing—unlock the potential of tensor computation and reshape your approach to high-dimensional geological structures. The discussion begins with foundational chapters, providing a solid background in both seismic data processing and tensor computation. The heart of the book lies in its seven chapters on tensor-based seismic data analysis methods. From structured low-tubal-rank tensor completion to cutting-edge techniques like tensor deep learning and tensor convolutional neural networks, each method is meticulously detailed. The superiority of tensor-based data analysis methods over traditional matrix-based data analysis approaches is substantiated through synthetic and real field examples, showcasing their prowess in handling high-dimensional modern seismic data. Notable chapters delve into seismic noise suppression, seismic data interpolation, and seismic data super-resolution using advanced tensor models. The final chapter provides a cohesive summary of the conclusion and future research directions, ensuring readers facilitate a thorough understanding of tensor computation applications in seismic data processing. The appendix includes a hatful of information on existing tensor computation software, enhancing the book's practical utility.
Tensor Eigenvalues and Their Applications (Advances in Mechanics and Mathematics #39)
by Liqun Qi Haibin Chen Yannan ChenThis book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems (Lecture Notes in Physics #964)
by Xi Chen Gang Su Maciej Lewenstein Shi-Ju Ran Emanuele Tirrito Cheng Peng Luca TagliacozzoTensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.
Tensor Properties of Crystals
by D LovettThe use of single crystals for scientific and technological applications is now widespread in solid-state physics, optics, electronics, materials science, and geophysics. An understanding of the variation of physical properties with crystalline direction is essential to maximize the performance of solid-state devices.Written from a physical viewpoint and avoiding advanced mathematics, Tensor Properties of Crystals provides a concise introduction to the tensor properties of crystals at a level suitable for advanced undergraduate and graduate students. While retaining the successful basic format of the well-known first edition, this second edition brings the material up to date with the latest developments in nonlinear optics and modulated structures. Because of the increasing importance of nonlinear optics, a new chapter on optoelectronics has been added. This edition also includes a short discussion on incommensurate modulated structures in the final chapter because they are relevant to high temperature superconductors and to ferroelectric and ferromagnetic materials. The book extensively contains diagrams, worked examples, and problems with answers throughout.
Tensor-Based Dynamical Systems: Theory and Applications (Synthesis Lectures on Mathematics & Statistics)
by Can ChenThis book provides a comprehensive review on tensor algebra, including tensor products, tensor unfolding, tensor eigenvalues, and tensor decompositions. Tensors are multidimensional arrays generalized from vectors and matrices, which can capture higher-order interactions within multiway data. In addition, tensors have wide applications in many domains such as signal processing, machine learning, and data analysis, and the author explores the role of tensors/tensor algebra in tensor-based dynamical systems where system evolutions are captured through various tensor products. The author provides an overview of existing literature on the topic and aims to inspire readers to learn, develop, and apply the framework of tensor-based dynamical systems.
Tensorial Methods and Renormalization in Group Field Theories
by Sylvain CarrozzaThe main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
Terahertz (NATO Science for Peace and Security Series B: Physics and Biophysics)
by Mauro Fernandes Pereira Apostolos ApostolakisCritical infrastructures are targets for terrorism and deliver a valuable vector through which the proliferation of CBRN and explosive precursors can be detected. Recent technological breakthroughs, notably in the field of near infrared (NIR), mid infrared (MIR), Terahertz (THz) and Gigahertz (GHz) sources and detectors, have led to rugged commercial devices, capable of standoff sensing a range of these dangerous substances. However, at the same time criminal and terrorist organizations have also benefited from the availability of technologies to increase the threat they pose to the security of citizens and a concerted effort is needed to improve early detection measures to identify activities, such as the production of homemade explosives or CBRN that can be potentially dangerous to society. The key global technological bottleneck to be overcome is the current lack of integration and networking of mature detection technology into early warning systems for critical infrastructures. Thus, this book brings together complementary information connecting the research of leading teams working on critical Infrastructure protection with academic developers and industrial producers of state of the art sensors.
Terahertz Antenna Technology for Space Applications
by Rakesh Mohan Jha Balamati Choudhury Aniruddha R. SondeThis book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide, along with possibilities of using this technology in deep space networks.
Terahertz Astronomy
by Christopher K. WalkerA Powerful Window into Cosmic EvolutionTerahertz (THz) observations of interstellar atoms, molecules, and dust serve as powerful probes of the conditions within the interstellar medium that permeates our galaxy, providing insights into the origins of stars, planets, galaxies, and the Universe. Taking a cross-disciplinary approach to the subject, Te
Terahertz Biomedical Science and Technology
by Joo-Hiuk SonA number of applications including scientific spectroscopy, security screening, and medical imaging have benefitted from the development and utilization of new and emerging terahertz (THz) generation and detection techniques. Exploring recent discoveries and the advancements of biological behaviors through THz spectroscopy and imaging and the devel
Terahertz Devices, Circuits and Systems: Materials, Methods and Applications
by Sudipta Das Anveshkumar Nella Shobhit K. PatelThis book is aimed to bring the emerging application aspects of THz technology and various modules used for its successful realization. It gathers scientific technological novelties and advancements already developed or under development in the academic and research communities. This book focuses on recent advances, different research issues in terahertz technology and would also seek out theoretical, methodological, well-established and validated empirical work dealing with these different topics. In particular, this textbook covers design considerations and current trends of THz antennas and antenna arrays to deal with the transmission and reception of THz EM waves. It also presents a discussion on metamaterial structures, meta-surfaces, and absorbers to be used for some kind of sensing and detection applications. Furthermore, it reports on THz wireless communication aspects, 6G network issues and challenges, advantages and disadvantages, generation and detection of THz waves, Signal and Communication Processing for THz communication, reconfigurable low-noise amplifier (LNA) design, III-Nitride HEMTs for THz Applications, photonic crystal fiber for sensing applications, THz Design Variable Estimation by Deep Optimization, and THz Imaging issues. Once the readers finish studying this book then they will learn about the importance of THz technology, advancement in the field, applications, THz modules like antennas, MIMO and DRAs, communication aspects, LNAs, generation of THz waves, etc and future scope. It also leads to enhancement in their knowledge in THz technology, gives a platform to future technology and novel applications realization.
Terahertz Physics
by R. A. LewisTerahertz physics covers one of the least explored but richest regions of the electromagnetic spectrum. Designed for independent learning, this is the first book to open up this exciting new field to students of science and engineering. Written in a clear and consistent style, the textbook focuses on an understanding of fundamental physical principles at terahertz frequencies and their applications. Part I outlines the foundations of terahertz science, starting with the mathematical representation of oscillations before exploring terahertz-frequency light, terahertz phenomena in matter and the terahertz interactions between light and matter. Part II covers components of terahertz technology, from sources of terahertz frequency radiation, through the manipulation of the radiation, to its detection. Part III deals with applications, including time-domain spectroscopy. Highlighting modern developments and concepts, the book is ideal for self-study. It features precise definitions, clear explanations, instructive illustrations, fully worked examples, numerous exercises and a comprehensive glossary.
Terahertz Planar Antennas for Next Generation Communication
by Ghanshyam Singh Kumud Ranjan JhaThis book describes various methods to enhance the directivity of planar antennas, enabling the next generation of high frequency, wireless communication. The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms. The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described. This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem.
Terahertz Spectroscopy: Principles and Applications (Optical Science and Engineering)
by Susan L. DexheimerThe development of new sources and methods in the terahertz spectral range has generated intense interest in terahertz spectroscopy and its application in an array of fields. Presenting state-of-the-art terahertz spectroscopic techniques, Terahertz Spectroscopy: Principles and Applications focuses on time-domain methods based on femtosecond laser sources and important recent applications in physics, materials science, chemistry, and biomedicine. The first section of the book examines instrumentation and methods for terahertz spectroscopy. It provides a comprehensive treatment of time-domain terahertz spectroscopic measurements, including methods for the generation and detection of terahertz radiation, methods for determining optical constants from time-domain measurements, and the use of femtosecond time-resolved techniques. The last two sections explore a variety of applications of terahertz spectroscopy in physics, materials science, chemistry, and biomedicine. With chapters contributed by leading experts in academia, industry, and research, this volume thoroughly discusses methods and applications, setting it apart from other recent books in this emerging terahertz field.
Terahertz Wave Detection and Imaging with a Hot Rydberg Vapour
by Christopher G. WadeThis book details groundbreaking experiments for the sensing and imaging of terahertz-frequency electromagnetic radiation (THz) using Rydberg atoms. The major advances described include the development and implementation of a new technique for THz imaging using atomic fluorescence; the demonstration of a THz-driven phase transition in room-temperature atomic vapour; and a novel method for probing the excited-state dynamics of atoms using quantum beats. The work has formed the basis for several articles published in journals including Nature Photonics and the Physical Review, and has sparked industry interest, becoming the subject of ongoing collaborative research and development. This exceptionally well-written book provides a definitive account of terahertz sensing with Rydberg atoms.
Terahertz Wireless Communication Components and System Technologies
by Arindam Biswas Trupti Ranjan Lenka Sudipta Das Mohammed El GhzaouiThis book presents scientific and technological innovations and advancements already developed or under development in academia, industry, and research communities. It includes fundamental ideas and advancement in terahertz technology covering high intensity terahertz wave generation, THz detection, different modes of THz wave generation, THz modulation system, and terahertz propagation channel modeling. It highlights methodologies for the design of terahertz components and system technologies including emerging applications. The chapter contents are based on theoretical, methodological, well-established, and validated empirical work dealing with different topics in the terahertz domain. The book covers a very broad audience ranging from basic sciences to experts and learners in engineering and technology. It would be a good reference for advanced ideas and concepts in THz technology which will best suit microwave, biomedical, and electrical and communication engineers working towards next-generation technology.
Terahertz and Mid Infrared Radiation
by Oleksiy Shulika Mauro F. PereiraTerahertz (THz) and Mid-Infrared (MIR) radiation (TERA-MIR) can be transmitted through nearly any material without causing biological harm. Novel and rapid methods of detection can be created with devices operation in these spectral ranges allowing scanning for weapons, detecting hidden explosives (including plastic landmines), controlling the quality of food and a host of other exciting applications. This book focuses on mathematical and physical aspects of the field, on unifying these two spectral domains (THz and MIR) with regard to common sources, detectors, materials and applications, and on key interdisciplinary topics. The main THz and MIR source is the quantum cascade laser (QCL). Thus significant attention is paid to the challenge of turning this advanced technology into affordable commercial devices so as to exploit its enormous potential. However other alternatives to THz QCLs are also presented, e.g. sub-terahertz imaging from avalanching GaAs bipolar transistors, Josephson junctions as THz sources, semiconductor materials for pulsed THz sources, superconducting THz electronics with Josephson vortices. In summary this book delivers a global picture of the state of the art in TERA-MIR generation, detection and applications.
Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)
by Oleksiy Shulika Mauro F. PereiraThe reader will find here a timely update on new THz sources and detection schemes as well as concrete applications to the detection of Explosives and CBRN. Included is a method to identify hidden RDX-based explosives (pure and plastic ones) in the frequency domain study by Fourier Transformation, which has been complemented by the demonstration of improvement of the quality of the images captured commercially available THz passive cameras. The presented examples show large potential for the detection of small hidden objects at long distances (6-10 m). Complementing the results in the short-wavelength range, laser spectroscopy with a mid-infrared, room temperature, continuous wave, DFB laser diode and high performance DFB QCL have been demonstrated to offer excellent enabling sensor technologies for environmental monitoring, medical diagnostics, industrial and security applications. From the new source point of view a number of systems have been presented - From superconductors to semiconductors, e. g. Detection of Terahertz Waves from Superconducting Bi2Sr2CaCu2O8+δ Intrinsic Josephson Junctions The quest for a compact room temperature THz source and the recent advances in high power mid-IR QCLs lead to the development of a semiconductor THz source based on intracavity difference frequency generation. Furthermore, alternative electrically pumped THz sources based on the high emission efficiency predicted for polaritonic states in the ultra-strong coupling regime led to the demonstration of electroluminescent devices. Finally, antipolaritons in dispersive media were discussed and different aspects of the interaction of THz radiation with biomatter were presented.
Teratogenicity Testing: Methods and Protocols (Methods in Molecular Biology #2753)
by Luís FélixThis fully updated volume collects laboratory techniques and tests to assess the risks to embryo-fetal development from drug exposure during early developmental stages. Beginning with a section detailing basic principles of teratogenicity, the book continues with application of in vitro models for teratogenic screening to predict toxicity in embryonic animals and humans, as well as a variety of well-established in vivo animal model tests, which offer solutions for evaluating the efficacy and the teratogenicity of compounds in preclinical trials before human safety testing. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Teratogenicity Testing: Methods and Protocols, Second Edition serves as an ideal guide to tests that can be performed in cells, organs, tissues, and animal models for evaluating toxicity and/or safety of compounds in early developmental stages with the goal of estimating, preventing, or minimizing the teratogenic potential of drugs.
Teratology in the Twentieth Century Plus Ten
by Harold KalterSerious congenital malformations are a major contributor to the infant death rate worldwide. Their nonhereditary causes are multiple and complex, and include infectious and metabolic dangers, disease medication, nutritional inadequacy, medicinal products, environmental agents and pollutants, among them. The cause of many however is still unknown. The wide range of these causes makes the defects of interest to those of a wide range of medical and investigatory backgrounds, especialy clinicians, fundamental scientists, and environmentalists.
Terminal Ballistics
by Zvi Rosenberg Erez DekelThis monograph covers all important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. It uses a unique approach to numerical simulations as sensitivity measure for the major physical parameters. In the first chapter, the book includes necessary details about the experimental equipment which are used for ballistic tests. The second chapter covers essential features of the codes which are used in recent years all over the world, the Euler vs. Lagrange schemes, meshing techniques etc. The third chapter, devoted to the penetration mechanics of rigid rods, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration of shaped charge jets and eroding long rods. The last chapter includes several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of the simulation approach in understanding the basis physics behind the investigated phenomena.
Terminal Ballistics
by Zvi Rosenberg Erez DekelThis book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling.This new, 3rd edition reflects a number of recent advances in materials science, such as the use of polyurea layers on metallic plates in order to improve their ballistics. In addition, more data and analyses are now available on dwell and interface defeat in ceramic tiles coated with polymers, and are presented here. Lastly, the new edition includes new results, numerical and empirical, concerning the DIF issue in brittle solids, as well as the “upturn” phenomenon in the stress–strain curves of ductile solids.The author also added a new analysis of concrete penetration experiments which accounts for the scaling issue in this field. This is a new,and important, addition which we are happy to announce. They also added some new insights into the interaction of EEP’s and FSP projectiles with metallic plates.Throughout the book, the authors demonstrate the advantages of the simulation approach in terms of understanding the basic physics behind the phenomena investigated, making it a must-read for all professionals who need to understand terminal ballistics.
Terminal Ballistics: A Text and Atlas of Gunshot Wounds
by Malcolm J. DoddTerminal Ballistics: A Text and Atlas of Gunshot Wounds begins with a presentation of basic firearms (rifle, pistol, and shotgun) and examines fundamental components of ammunition rounds. The second part of the book deals with the varied patterns of gunshot injury, beginning with the concept of the pathological range of fire determination. Pattern injuries sustained after discharge from handguns, shotguns, and black powder weapons are presented in depth. Further chapters detail more obscure injuries such as those from homemade weapons. The final section deals with more technical aspects of wound examination, including gunshot injury in war and crimes against humanity.