Browse Results

Showing 74,401 through 74,425 of 83,751 results

Superalloys: Analysis and Control of Failure Process

by Nataliya V. Kazantseva Natalia N. Stepanova Mikhail B. Rigmant

Superalloys form a class of the structural materials for high-temperature applications. Nickel superalloys are extensively used in the high-temperature components of gas turbines due to their excellent creep, fatigue, and corrosion resistance at elevated temperatures. These materials are considered paramagnetic in the range of working temperatures. This book presents the features of the ternary phase diagrams Ni-Al-X (X = {Co, Fe, Nb, Ti, Cr}), effects of the alloying on the long-range order and mechanical properties of the Ni3 Al-based alloys. Description of the strain-induced ferromagnetism in the Ni3Al-based alloys and magnetic control of the failure of gas turbine blades are also included. A separate section is devoted to the analysis of the vibration process and strength change in the single-crystal gas turbine blades. This book includes the review of the new intermetallic cobalt superalloys. The structure, crystal lattice parameters, orientation relationships between phases, mechanical and magnetic properties of the Co3(Al,W)-based alloys are described. Non-destructive magnetic point control of the martensite content in low-magnetic austenitic alloys is a new method for detection of the local sites with internal stresses. This method is useful for the detection of the residual stress in the critical parts of industrial products. This book may be useful for specialists in material science, first-year postgraduate students taking a class in material science and engineering, and engineers developing new alloys for the gas turbine technology.

Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys (The Minerals, Metals & Materials Series)

by Chris O'Brien Mark Hardy Sammy Tin Justin Clews Jonathan Cormier Qiang Feng John Marcin Akane Suzuki

The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.

Superamphiphobic Surfaces: Fabrication, Characterization, and Applications

by Junping Zhang Mohammad Shahid

A definitive resource on superamphiphobic surfaces, covering their fabrications, characterizations, practical applications, challenges, and future directions Superamphiphobic Surfaces: Fabrication, Characterization, and Applications addresses a critical knowledge gap in the field of superamphiphobic surfaces, a class of materials with the extraordinary ability to repel water, oil, and other liquids, by both exploring their fundamentals and also offering detailed insights into their fabrication techniques, characterization methods, and durability considerations. The book presents practical applications of superamphiphobic surfaces in self-cleaning, anti-fouling, environmental clean-up, biomedicine, and food packaging and processing. The book is divided into five parts. Part I lays the foundation for understanding superamphiphobic surfaces by introducing the fundamental principles that govern their behavior. Part II discusses the fabrication techniques developed to produce superamphiphobic surfaces with varying complexity, durability, and functionality. Part III provides guidelines to evaluate the performance of superamphiphobic surfaces. Part IV highlights several key areas where these surfaces are already being applied. Part V addresses the current challenges and prospects of superamphiphobic surfaces. Written by an experienced team of researchers, Superamphiphobic Surfaces covers sample topics such as: The increased level of sophistication required to achieve superoleophobicity, particularly for liquids with low surface tensionContact angle hysteresis, wetting regimes, and the role of micro- and nanoscale structures in achieving extreme liquid repellencySpecific challenges associated with scaling up fabrication techniques in industrial applicationsPerformance criteria including mechanical durability, resistance to liquid impalement, and self-healing capabilitiesThe lifespan of various materials in harsh environments such as oil rigs, pipelines, and marine vessels Empowering readers with knowledge to drive innovation, solve practical problems, and enhance their expertise, Superamphiphobic Surfaces is an essential reference for researchers and professionals in materials science, healthcare, environmental protection, and other fields.

Superatoms: An Introduction

by Nicola Gaston

Superatoms are a growing topic of interest in nanoscience, bringing the physics of electronic structure together with the chemistry of atomically precise clusters. They offer the prospect of materials design based on the targeted tunability of nanoscale building blocks, creating electronic materials that can be used as everything from catalysts to computing hardware. This book is designed to be an introduction to the field, covering the history of the concept and related theoretical models from cluster physics. It provides an overview of modern theoretical techniques and presents a survey of recent literature, with particular emphasis on the utilization of these nanoscale building blocks. It explores the jellium model, shell structure in nuclear physics, and the relationship of these to the solution of the Schrödinger equation for the atom. The subsequent extension into density functional theory enables multiple examples of recent literature studies to be used to demonstrate the key concepts. This book is an ideal introduction for students looking to build bridges between cluster and condensed matter physics and the chemistry of superatoms, in particular at a graduate level.

Superatoms: Principles, Synthesis and Applications

by Purusottam Puru Jena Qiang Sun

Explore the theory and applications of superatomic clusters and cluster assembled materials Superatoms: Principles, Synthesis and Applications delivers an insightful and exciting exploration of an emerging subfield in cluster science, superatomic clusters and cluster assembled materials. The book presents discussions of the fundamentals of superatom chemistry and their application in catalysis, energy, materials science, and biomedical sciences. Readers will discover the foundational significance of superatoms in science and technology and learn how they can serve as the building blocks of tailored materials, promising to usher in a new era in materials science. The book covers topics as varied as the thermal and thermoelectric properties of cluster-based materials and clusters for CO2 activation and conversion, before concluding with an incisive discussion of trends and directions likely to dominate the subject of superatoms in the coming years. Readers will also benefit from the inclusion of: A thorough introduction to the rational design of superatoms using electron-counting rules Explorations of superhalogens, endohedrally doped superatoms and assemblies, and magnetic superatoms A practical discussion of atomically precise synthesis of chemically modified superatoms A concise treatment of superatoms as the building blocks of 2D materials, as well as superatom-based ferroelectrics and cluster-based materials for energy harvesting and storage Perfect for academic researchers and industrial scientists working in cluster science, energy materials, thermoelectrics, 2D materials, and CO2 conversion, Superatoms: Principles, Synthesis and Applications will also earn a place in the libraries of interested professionals in chemistry, physics, materials science, and nanoscience.

Superbug

by Maryn Mckenna

LURKING in our homes, hospitals, schools, and farms is a terrifying pathogen that is evolving faster than the medical community can track it or drug developers can create antibiotics to quell it. That pathogen is MRSA--methicillin-resistant Staphyloccocus aureus--and Superbug is the first book to tell the story of its shocking spread and the alarming danger it poses to us all.Doctors long thought that MRSA was confined to hospitals and clinics, infecting almost exclusively those who were either already ill or old. But through remarkable reporting, including hundreds of interviews with the leading researchers and doctors tracking the deadly bacterium, acclaimed science journalist Maryn McKenna reveals the hidden history of MRSA's relentless advance--how it has overwhelmed hospitals, assaulted families, and infiltrated agriculture and livestock, moving inexorably into the food chain. Taking readers into the medical centers where frustrated physicians must discard drug after drug as they struggle to keep patients alive, she discloses an explosion of cases that demonstrate how MRSA is growing more virulent, while evolving resistance to antibiotics with astonishing speed. It may infect us at any time, no matter how healthy we are; it is carried by a stunning number of our household pets; and it has been detected in food animals from cows to chickens to pigs.With the sensitivity of a novelist, McKenna portrays the emotional and financial devastation endured by MRSA's victims, vividly describing the many stealthy ways in which the pathogen overtakes the body and the shock and grief of parents whose healthy children were felled by infection in just hours. Through dogged detective work, she discloses the unheard warnings that predicted the current crisis and lays bare the flaws that have allowed MRSA to rage out of control: misplaced government spending, inadequate public health surveillance, misguided agricultural practices, and vast overuse of the few precious drugs we have left. Empowering readers with the knowledge they need for self-defense, Superbug sounds an alarm: MRSA has evolved into a global emergency that touches almost every aspect of modern life. It is, as one deeply concerned researcher tells McKenna, "the biggest thing since AIDS."

Superbugs: An Arms Race against Bacteria

by William Hall

Antibiotics are powerful drugs that can prevent and treat infections, but they are becoming less effective as a result of drug resistance. Resistance develops because the bacteria that antibiotics target can evolve ways to defend themselves against these drugs. When antibiotics fail, there is very little else to prevent an infection from spreading. Unnecessary use of antibiotics in both humans and animals accelerates the evolution of drug-resistant bacteria, with potentially catastrophic personal and global consequences. Our best defenses against infectious disease could cease to work, surgical procedures would become deadly, and we might return to a world where even small cuts are life-threatening. The problem of drug resistance already kills over one million people across the world every year and has huge economic costs. Without action, this problem will become significantly worse. Following from their work on the Review on Antimicrobial Resistance, William Hall, Anthony McDonnell, and Jim O’Neill outline the major systematic failures that have led to this growing crisis. They also provide a set of solutions to tackle these global issues that governments, industry, and public health specialists can adopt. In addition to personal behavioral modifications, such as better handwashing regimens, Superbugs argues for mounting an offense against this threat through agricultural policy changes, an industrial research stimulus, and other broad-scale economic and social incentives.

Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques (SpringerBriefs in Materials)

by Satyajit Ratha Aneeya Kumar Samantara

This book discusses the instrumentation of supercapacitors, various measurement procedures and the techniques used for the performance evaluation, to help determine the appropriate methodology for the evaluation of a supercapacitor device and also to identify the inconsistencies between the device performance and electrode material properties. As a promising energy storage option, supercapacitors need to be readied for commercialization rather than confined within the niche of academic research. This book also assists in the formulation of strict performance guidelines aided by realistic evaluation techniques, so that these devices can be made available to society through industrial production. As such it is an important read not only for academicians and researchers, but also for industry and policymakers.

Supercapacitors and Their Applications: Fundamentals, Current Trends, and Future Perspectives

by Anjali Paravannoor and Baiju K. V.

Owing to their high-power density, long life, and environmental compatibility, supercapacitors are emerging as one of the promising storage technologies, but with challenges around energy and power requirements for specific applications. This book focusses on supercapacitors including details on classification, charge storage mechanisms, related kinetics, and thermodynamics. Materials used as electrodes, electrolytes, and separators, procedures followed, characterization methods, and modeling are covered, along with emphasis on related applications. Features: Provides an in-depth look at supercapacitors, including their working concepts and design Reviews detailed explanation of various characterization and modeling techniques Give special focus to the application of supercapacitors in major areas of environmental as well as social importance Covers cyclic voltammetry, charging–discharging curves, and electrochemical impedance spectroscopy as characterization techniques Includes a detailed chapter on historical perspectives on the evolution of supercapacitors This book is aimed at researchers and graduate students in materials science and engineering, nanotechnology, chemistry in batteries, and physics.

Supercapacitors Based on Carbon or Pseudocapacitive Materials

by Frédéric Favier Patrice Simon Thierry Brousse

Electrochemical capacitors are electrochemical energy storage devices able to quickly deliver or store large quantities of energy. They have stimulated numerous innovations throughout the last 20 years and are now implemented in many fields. Supercapacitors Based on Carbon or Pseudocapacitive Materials provides the scientific basis for a better understanding of the characteristics and performance of electrochemical capacitors based on electrochemical double layer electrodes or pseudocapacitive materials, as well as providing information on the design and conception of new devices such as lithium-ion capacitors. This book details the various applications of supercapacitors, ranging from power electronics and stationary use, to transportation (hybrid vehicles, trams, planes, etc.). They are increasingly used in the automotive sector, especially as part of stop/start systems that have allowed for energy recovery through braking and reduced fuel consumption.

Supercavitation

by Igor Nesteruk

This collection is dedicated to the 70th jubilee of Yu. N. Savchenko, and presents experimental, theoretical, and numerical investigations written by an international group of well-known authors. The contributions solve very important problems of the high-speed hydrodynamics,such as supersonic motion in water, drag diminishing, dynamics and stability of supercavitating vehicles, water entry and hydrodynamic performances of hydrofoils, ventilated cavities after a disc and under the ship bottom. The book is written for researches, scientists, engineers, and students interested in problems of hydromechanics.

Supercerebro: Libere el poder explosivo de su mente para potenciar su salud, su felicidad y su

by Deepak Chopra

Este revolucionario y novedoso manual le mostrará cómo usar su cerebro como portal hacia la salud, la felicidad y el crecimiento espiritual. En contraste con el cerebro estándar, que sólo desempeña tareas cotidianas, Chopra y Tanzi proponen que el cerebro puede aprender a superar sus limitaciones actuales. Supercerebro le explica cómo hacerlo a través de los descubrimientos científicos de vanguardia y la percepción espiritual, del derrumbamiento de los cinco mitos más comunes sobre el cerebro que limitan su potencial y de la implementación de métodos para: -Usar su cerebro, en vez de permitir que él lo use a usted. -Desarrollar el estilo de vida ideal para tener un cerebro saludable. -Reducir los riesgos del envejecimiento. -Fomentar la felicidad y el bienestar por medio de la conexión entre mente y cuerpo. -Acceder al cerebro iluminado, que es el portal para la libertad y la dicha. -Sobreponerse a los retos más comunes, como la pérdida de memoria, la depresión, la ansiedad y la obesidad. Su cerebro es capaz de sanar de forma extraordinaria y de reconfigurarse de forma constante. Si establece una nueva relación con él, transformará su vida. En Supercerebro, Chopra y Tanzi lo guiarán a través de un fascinante viaje que pronostica un salto en la evolución humana. El cerebro no es sólo el don más increíble que nos ha dado la naturaleza, sino que también es el portal para un futuro ilimitado que puede comenzar a vivir hoy mismo. "Este par de especialistas de talla internacional combina su conocimiento para dar vida, en un elegante texto que nos permitirá mantener la juventud cerebral, a la cautivadora historia de nuestro cerebro." Dr. Mehmet Oz

Supercharge, Invasion, and Mudcake Growth in Downhole Applications (Advances in Petroleum Engineering)

by Tao Lu Xiaofei Qin Yongren Feng Yanmin Zhou Wilson Chin

Mysterious "supercharge effects," encountered in formation testing pressure transient analysis, and reservoir invasion, mudcake growth, dynamic filtration, stuck-pipe remediation, and so on, are often discussed in contrasting petrophysical versus drilling contexts. However, these effects are physically coupled and intricately related. The authors focus on a comprehensive formulation, provide solutions for different specialized limits, and develop applications that illustrate how the central ideas can be used in seemingly unrelated disciplines. This approach contributes to a firm understanding of logging and drilling principles. Fortran source code, furnished where applicable, is listed together with recently developed software applications and conveniently summarized throughout the book. In addition, common (incorrect) methods used in the industry are re-analyzed and replaced with more accurate models, which are then used to address challenging field objectives. Sophisticated mathematics is explained in "down to earth" terms, but empirical validations, in this case through Catscan experiments, are used to "keep predictions honest." Similarly, early-time, low mobility, permeability prediction models used in formation testing, several invented by one of the authors, are extended to handle supercharge effects in overbalanced drilling and near-well pressure deficits encountered in underbalanced drilling. These methods are also motivated by reality. For instance, overpressures of 2,000 psi and underpressures near 500 psi are routinely reported in field work, thus imparting a special significance to the methods reported in the book. This new volume discusses old problems and modern challenges, formulates and develops advanced models applicable to both drilling and petrophysical objectives. The presentation focuses on central unifying physical models which are carefully formulated and mathematically solved. The wealth of applications examples and supporting software discussed provides readers with a unified focus behind daily work activities, emphasizing common features and themes rather than unrelated methods and work flows. This comprehensive book is "must" reading for every petroleum engineer.

Supercharge Your Brain: How to Maintain a Healthy Brain Throughout Your Life

by James Goodwin

The definitive guide to keeping your brain healthy for a long and lucid life, by one of the world's leading scientists in the field of brain health and ageing.The brain is our most vital and complex organ. It controls and coordinates our actions, thoughts and interactions with the world around us. It is the source of personality, of our sense of self, and it shapes every aspect of our human experience. Yet most of us know precious little about how our brains actually work, or what we can do to optimise their performance. Whilst cognitive decline is the biggest long-term health worry for many of us, practical knowledge of how to look after our brain is thin on the ground. In this ground-breaking new book, leading expert Professor James Goodwin explains how simple strategies concerning exercise, diet, social life, and sleep can transform your brain health paradigm, and shows how you can keep your brain youthful and stay sharp across your life. Combining the latest scientific research with insightful storytelling and practical advice, Supercharge Your Brain reveals everything you need to know about how your brain functions, and what you can do to keep it in peak condition.

Supercomputing for Molecular Dynamics Simulations

by Alexander Heinecke Wolfgang Eckhardt Martin Horsch Hans-Joachim Bungartz

This work presents modern implementations of relevant molecular dynamics algorithms using ls1 mardyn, a simulation program for engineering applications. The text focuses strictly on HPC-related aspects, covering implementation on HPC architectures, taking Intel Xeon and Intel Xeon Phi clusters as representatives of current platforms. The work describes distributed and shared-memory parallelization on these platforms, including load balancing, with a particular focus on the efficient implementation of the compute kernels. The text also discusses the software-architecture of the resulting code.

Superconducting Devices in Quantum Optics

by Robert H. Hadfield Göran Johansson

This book presents the basics and applications of superconducting devices in quantum optics. Over the past decade, superconducting devices have risen to prominence in the arena of quantum optics and quantum information processing. Superconducting detectors provide unparalleled performance for the detection of infrared photons in quantum cryptography, enable fundamental advances in quantum optics, and provide a direct route to on-chip optical quantum information processing. Superconducting circuits based on Josephson junctions provide a blueprint for scalable quantum information processing as well as opening up a new regime for quantum optics at microwave wavelengths. With recent advances in coherent conversion between telecom and microwave frequencies, it is possible to envisage the marriage of these approaches, as superconducting qubits are embedded in long distance fiber optic communications networks. This volume, edited by two leading researchers, provides a timely compilation of contributions from top groups worldwide across this dynamic field, anticipating future advances in this domain.

Superconducting Magnetic Energy Storage Systems (SpringerBriefs in Energy)

by Enrique-Luis Molina-Ibáñez Antonio Colmenar-Santos Enrique Rosales-Asensio

This book explores the potential of magnetic superconductors in storage systems, specifically focusing on superconducting magnetic energy storage (SMES) systems and using the Spanish electricity system, controlled by Red Eléctrica de España (REE), as an example.The book provides a comprehensive analysis of the economic costs associated with the manufacture and maintenance of SMES systems, as well as a regulatory analysis for their implementation in the complex Spanish electrical system. The analysis also compares this system with the regulations of other countries, providing a comprehensive case study.The book examines the possible economic and environmental benefits of using magnetic superconductors in electrical systems and provides a technical study of the use of these systems in hybrid storage systems that complement each other to optimize network performance. The study is conducted from the perspective of new distribution networks, distributed generation, and the concepts of the smart city. The book also explores potential applications and developments, such as electric vehicles.Overall, this book offers an insightful and comprehensive analysis of the potential of magnetic superconductors in storage systems. It will be an invaluable resource for researchers, engineers, and policymakers interested in the future of energy storage systems

Superconducting Materials: Fundamentals, Synthesis and Applications

by Yassine Slimani Essia Hannachi

This book presents an overview of the science of superconducting materials. It covers the fundamentals and theories of superconductivity. Subjects of special interest involving mechanisms of high temperature superconductors, tunneling, transport properties, magnetic properties, critical states, vortex dynamics, etc. are present in the book. It assists as a fundamental resource on the developed methodologies and techniques involved in the synthesis, processing, and characterization of superconducting materials. The book covers numerous classes of superconducting materials including fullerenes, borides, pnictides or iron-based chalcogen superconductors ides, alloys and cuprate oxides. Their crystal structures and properties are described. Thereafter, the book focuses on the progress of the applications of superconducting materials into superconducting magnets, fusion reactors, and accelerators and other superconducting magnets. The applications also cover recent progress in superconducting wires, power generators, powerful energy storage devices, sensitive magnetometers, RF and microwave filters, fast fault current limiters, fast digital circuits, transport vehicles, and medical applications.

Superconducting Memory Technologies (Synthesis Lectures on Emerging Engineering Technologies)

by Ahmedullah Aziz Shamiul Alam

There is a lot of excitement around quantum computers that use superconducting qubits, which operate at extremely low temperatures since they are ultra-sensitive to noise. These quantum computers need a memory and control processor that can operate under cryogenic conditions. Among the cryogenic memory technologies, superconducting memories are the most efficient and compatible for these purposes. They can help advance quantum computing, facilitate high-performance computing, and explore space more effectively. However, cryogenic memory technologies currently face various challenges. This book discusses the latest advancements in superconducting memory technologies. It covers four main types of superconducting memories: Josephson junction-based, magnetic Josephson junction-based, superconducting memristor-based, and ferroelectric superconducting quantum interference device-based memories. The book explores the background, working principles, and challenges of each of these technologies, providing a comprehensive overview of the field.

Superconducting Radiofrequency Technology for Accelerators: State of the Art and Emerging Trends

by Hasan Padamsee

Superconducting Radiofrequency Technology for Accelerators Single source reference enabling readers to understand and master state-of-the-art accelerator technology Superconducting Radiofrequency Technology for Accelerators provides a quick yet thorough overview of the key technologies for current and future accelerators, including those projected to enable breakthrough developments in materials science, nuclear and astrophysics, high energy physics, neutrino research and quantum computing. The work is divided into three sections. The first part provides a review of RF superconductivity basics, the second covers new techniques such as nitrogen doping, nitrogen infusion, oxide-free niobium, new surface treatments, and magnetic flux expulsion, high field Q slope, complemented by discussions of the physics of the improvements stemming from diagnostic techniques and surface analysis as well as from theory. The third part reviews the on-going applications of RF superconductivity in already operational facilities and those under construction such as light sources, proton accelerators, neutron and neutrino sources, ion accelerators, and crab cavity facilities. The third part discusses planned accelerator projects such as the International Linear Collider, the Future Circular Collider, the Chinese Electron Positron Collider, and the Proton Improvement Plan-III facility at Fermilab as well as exciting new developments in quantum computing using superconducting niobium cavities. Written by the leading expert in the field of radiofrequency superconductivity, Superconducting Radiofrequency Technology for Accelerators covers other sample topics such as: Fabrication and processing on Nb-based SRF structures, covering cavity fabrication, preparation, and a decade of progress in the field SRF physics, covering zero DC resistance, the Meissner effect, surface resistance and surface impedance in RF fields, and non-local response of supercurrent N-doping and residual resistance, covering trapped DC flux losses, hydride losses, and tunneling measurements Theories for anti-Q-slope, covering the Xiao theory, the Gurevich theory, non-equilibrium superconductivity, and two fluid model based on weak defects Superconducting Radiofrequency Technology for Accelerators is an essential reference for high energy physicists, power engineers, and electrical engineers who want to understand the latest developments of accelerator technology and be able to harness it to further research interest and practical applications.

Superconductivity: Discoveries and Discoverers

by Kristian Fossheim

This book is about the work of 10 great scientists; who they were and are, their personal background and how they achieved their outstanding results and took their prominent place in science history. We follow one of physics and science history's most enigmatic phenomena, superconductivity, through 100 years, from its discovery in 1911 to the present, not as a history book in the usual sense, but through close ups of the leading characters and their role in that story, the Nobel laureates, who were still among us in the years 2001-2004 when the main round of interviews was carried out. Since then two of them already passed away. For each one of the 10 laureates, the author tells their story by direct quotation from interviews in their own words. Each chapter treats one laureate. The author first gives a brief account of the laureates' scientific background and main contribution. Then each laureate tells his own story in his own words. This book is unique in its approach to science history.

Superconductivity

by Rudolf Huebener W. Buckel Reinhold Kleiner

The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An extensive list of more than 350 references provides an overview of the most important publications on the topic. A unique and essential guide for students in physics and engineering, as well as a reference for more advanced researchers and young professionals.

Superconductivity: Basics and Applications to Magnets (Springer Series in Materials Science #214)

by R.G. Sharma

This book presents the basics of superconductivity and applications of superconducting magnets. It explains the phenomenon of superconductivity, describes theories of superconductivity, and discusses type II and high-temperature cuprate superconductors. The main focus of the book is the application of superconducting magnets in accelerators, fusion reactors and other advanced applications such as nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), high-gradient magnetic separation (HGMS), and superconducting magnetic energy storage (SMES). This new and significantly extended second edition covers the state of the art in the development of novel superconductors for advanced magnet applications, as well as the production of practical superconducting wires, tapes, and ultra high current cables used for high-field magnets. It includes two new chapters each devoted to MgB2 and Fe-based superconductors, and discusses the recently developed and world record-setting 45.5-Tesla magnetic field generated by a combination of conventional and high-temperature cuprate superconducting magnets. In addition, it discusses the status and outlook of all current and future nuclear fusion reactors worldwide. The chapter on accelerators includes the ongoing efforts to build high luminosity LHC (HL-LHC), the high-energy 28 TeV LHC (HE-LHC), the future circular collider (FCC) at CERN, and the just launched electro-ion collider (EIC) at Brookhaven National Laboratory. The book is based on the long-standing experience of the author in studying superconducting materials, building magnets and delivering numerous lectures to research scholars and students. The book provides comprehensive and fundamental knowledge in the field of applied superconductivity, greatly benefiting researchers and graduate students wishing to learn more about the various aspects of superconductivity and advanced magnet applications.

Superconductivity and Electromagnetism (Springer Series in Solid-State Sciences #195)

by Teruo Matsushita

This book introduces readers to the characteristic features of electromagnetic phenomena in superconductivity. It first demonstrates not only that the diamagnetism in the superconductivity complies with Maxwell’s theory, which was formulated before the discovery of superconductivity, but also that the dominant E-B analogy in the electromagnetism loses perfection without the superconductivity. The book then explores flux pinning, which is responsible for the non-dissipative current in DC, leading to irreversibility in AC. Drawing on Maxwell’s work, it also proves theoretically that if there is no energy dissipation in the superconductivity caused by the break in time reversal symmetry, it contradicts the thermodynamic principle of energy conservation – something that had previously only been proved experimentally.Lastly, the book addresses the longitudinal magnetic field effect, and explains how this phenomenon leads to a new development of Maxwell’s theory. Featuring numerous appendices to help readers understand the methods of derivation of equations, this book offers students and young scientists an introduction to applied superconductivity, especially in the context of power applications. Presenting the characteristic features of electromagnetic phenomena in superconductivity from basic to advanced topics for applications, the book offers a valuable resource for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.

Superconductivity and Magnetism in Skutterudites

by Ctirad Uher

Superconductivity and Magnetism in Skutterudites discusses superconducting and magnetic properties of a class of materials called skutterudites. With a brief introduction of the fundamental structural features of skutterudites, the book then provides a detailed assessment of the superconducting and magnetic properties, focusing particularly on the rare earth-filled skutterudites where a plethora of fascinating properties and ground states is realized due to interactions of the filler species with the framework ions. Such interactions underpin the exciting forms of superconductivity and magnetism, most notably realized in the exotic heavy fermion superconductor of composition PrOs4Sb12. The two main topics of superconductivity and magnetism are provided with a concise introduction of superconducting and magnetic properties so that a reader can appreciate and understand the main arguments in the text. This book would appeal to graduate students, postdoctoral students, and anyone interested in superconducting and magnetic properties of a large family of minerals called skutterudites. Key Features:• Gives a thorough account of the superconducting and magnetic properties of skutterudites. • Each topic is accompanied by introductory sections to assist in the understanding of the text. • Supported by numerous figures and all key references.

Refine Search

Showing 74,401 through 74,425 of 83,751 results