- Table View
- List View
Earthquake Engineering (Structural Engineering: Mechanics and Design)
by Y-X. Hu S-C. Liu W. DongA unified presentation of engineering seismology and earthquake-resistant design, this book presents a wide ranging coverage of the whole subject of earthquake engineering so that the reader is given a clear appreciation of earthquakes before dealing with their effects on structures. In addition, newer mathematical modelling techniques are introduc
Earthquake Engineering Frontiers in the New Millennium
by B.F. Spencer and Y.X. HuThis volume comprises papers presented at the China-US Millennium Symposium on Earthquake Engineering, held in Beijing, China, on November 8-11, 2000. This conference provides a forum for advancing the field of earthquake engineering through multi-lateral cooperation.
Earthquake Engineering Handbook
by Charles Scawthorn Wai-Fah ChenEarthquakes are nearly unique among natural phenomena - they affect virtually everything within a region, from massive buildings and bridges, down to the furnishings within a home. Successful earthquake engineering therefore requires a broad background in subjects, ranging from the geologic causes and effects of earthquakes to understanding the imp
Earthquake Engineering and Structural Control: Theory and Applications
by Srinivasan Chandrasekaran Giorgio Serino Mariacristina SpizzuocoEarthquake Engineering and Structural Control: Theory and Applications examines the basics of structural dynamics with its application for earthquake engineering and structural control methods. The objective is not to explain earthquake-resistant design but rather to present different methods of analysis under earthquake and other environmental loads such as fire and physical impact. While presenting fundamental concepts in a simple manner, this book presents structural systems and offshore structures leading to form-dominant design. The response spectrum method and nonlinear time history analysis of structures under earthquake loads are discussed in detail, while the basics of earthquake-resistant design through planning guidelines, as well as introductory seismology, are also covered. Presents dynamic analysis and illustrations of single-degree-of-freedom systems with numerous examples to explain the response spectrum analysis under earthquake and impact loads. Offers detailed solutions to multi-degree-of-freedom systems through numerical methods, supported by MATLAB® examples. Explains the proper application of seismic controls for different classes of structures, including offshore.
Earthquake Engineering and Structural Dynamics in Memory of Ragnar Sigbjörnsson
by Rajesh Rupakhety Símon ÓlafssonThis book presents methods and results that cover and extend beyond the state-of-the-art in structural dynamics and earthquake engineering. Most of the chapters are based on the keynote lectures at the International Conference in Earthquake Engineering and Structural Dynamics (ICESD), held in Reykjavik, Iceland, on June 12-14, 2017. The conference is being organised in memory of late Professor Ragnar Sigbjörnsson, who was an influential teacher and one of the leading researchers in the fields of structural mechanics, random fields, engineering seismology and earthquake engineering. Professor Sigbjörnsson had a close research collaboration with the Norwegian Institute of Science and Technology (NTNU), where his research was mainly focused in dynamics of marine and offshore structures. His research in Iceland was mainly focused on engineering seismology and earthquake engineering. The keynote-lecture based chapters are contributed by leading experts in these fields of research and showcase not only the historical perspective but also the most recent developments as well as a glimpse into the future. These chapters showcase a synergy of the fields of structural dynamics, engineering seismology, and earthquake engineering. In addition, some chapters in the book are based on works carried out under the leadership and initiative of Professor Sigbjörnsson and showcase his contribution to the understanding of seismic hazard and risk in Iceland. As such, the book is useful for both researchers and practicing engineers who are interested in recent research advances in structural dynamics and earthquake engineering, and in particular to those interested in seismic hazard and risk in Iceland.
Earthquake Engineering for Concrete Dams: Analysis, Design, and Evaluation
by Anil K. ChopraA comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems. Earthquake Engineering for Concrete Dams offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. This important book: Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers, Earthquake Engineering for Concrete Dams offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.
Earthquake Engineering for Nuclear Facilities
by Masanori Hamada Michiya KunoThis book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground are explained.
Earthquake Engineering for Structural Design
by W. F. Chen E. M. LuiMany important advances in designing earthquake-resistant structures have occurred over the last several years. Civil engineers need an authoritative source of information that reflects the issues that are unique to the field. Comprising chapters selected from the second edition of the best-selling Handbook of Structural Engineering, this book provides a tightly focused, economical guide to the theoretical, practical, and computational aspects of earthquake engineering. It discusses the fundamentals of earthquake engineering, the various types of earthquake damage to structures, seismic design of buildings and bridges, and performance-based seismic design and evaluation of building structures.
Earthquake Engineering for Structural Design
by Victor Gioncu Federico MazzolaniDevelopments in Earthquake Engineering have focussed on the capacity and response of structures. They often overlook the importance of seismological knowledge to earthquake-proofing of design. It is not enough only to understand the anatomy of the structure, you must also appreciate the nature of the likely earthquake.Seismic design, as detailed in
Earthquake Engineering in Europe
by Atilla Ansal Mihail GarevskiThis book contains 9 invited keynote and 12 theme lectures presented at the 14th European Conference on Earthquake Engineering (14ECEE) held in Ohrid, Republic of Macedonia, from August 30 to September 3, 2010. The conference was organized by the Macedonian Association for Earthquake Engineering (MAEE), under the auspices of European Association for Earthquake Engineering (EAEE). The book is organized in twenty one state-of-the-art papers written by carefully selected very eminent researchers mainly from Europe but also from USA and Japan. The contributions provide a very comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake resistant engineering structures, new techniques and technologies and managing risk in seismic regions are all among the different topics covered in this book. The book also includes the First Ambraseys Distinguished Award Lecture given by Prof. Theo P. Tassios in the honor of Prof. Nicholas N. Ambraseys. The aim is to present the current state of knowledge and engineering practice, addressing recent and ongoing developments while also projecting innovative ideas for future research and development. It is not always possible to have so many selected manuscripts within the broad spectrum of earthquake engineering thus the book is unique in one sense and may serve as a good reference book for researchers in this field. Audience: This book will be of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.
Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering
by Yousef Bozorgnia Vitelmo V. BerteroThis multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Earthquake Geotechnical Case Histories for Performance-Based Design: ISSMGE TC4 2005-2009 Term Volume
by Takaji KokushoEarthquake Geotechnical Case Histories for Performance-Based Design is a collection of 26 case histories, each study containing well-instrumented geotechnical and earthquake data. The book is intended to serve as a reference work, since it contains a common scale to develop and implement design methodologies and numerical analyses, so that their re
Earthquake Geotechnical Engineering Design
by Michele Maugeri Claudio SoccodatoPseudo-static analysis is still the most-used method to assess the stability of geotechnical systems that are exposed to earthquake forces. However, this method does not provide any information about the deformations and permanent displacements induced by seismic activity. Moreover, it is questionable to use this approach when geotechnical systems are affected by frequent and rare seismic events. Incidentally, the peak ground acceleration has increased from 0. 2-0. 3 g in the seventies to the current value of 0. 6-0. 8 g. Therefore, a shift from the pseudo-static approach to performance-based analysis is needed. Over the past five years considerable progress has been made in Earthquake Geotechnical Engineering Design (EGED). The most recent advances are presented in this book in 6 parts. The evaluation of the site amplification is covered in Part I of the book. In Part II the evaluation of the soil foundation stability against natural slope failure and liquefaction is treated. In the following 3 Parts of the book the EGED for different geotechnical systems is presented as follows: the design of levees and dams including natural slopes in Part III; the design of foundations and soil structure interaction analysis in Part IV; underground structures in Part V. Finally in Part VI, new topics like the design of reinforced earth retaining walls and landfills are covered.
Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions: Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, (ICEGE 2019), June 17-20, 2019, Rome, Italy (Proceedings in Earth and Geosciences)
by Francesco Silvestri, Nicola MoraciEarthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.
Earthquake Geotechnics: Select Proceedings of 7th ICRAGEE 2021 (Lecture Notes in Civil Engineering #187)
by T. G. Sitharam Sreevalsa Kolathayar Ravi JakkaThis volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include ground response analysis & local site effect, seismic slope stability & landslides, application of AI in geotechnical earthquake engineering, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.
Earthquake Hazard Assessment: India and Adjacent Regions
by Sreevalsa Kolathayar T.G. SitharamThis book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.
Earthquake Prediction
by Mikhail B. GokhbergThis study presents an account of electromagnetic phenomena in the earth's crust immediately preceding a tectonic earthquake. The results of experiments performed throughout the last 20 years using data collected from the satellite and ground-based observations are analyzed and form the basis of various conceptual explanations of seismo-electromagnetic phenomena. The authors also present their own theoretical model of the generation of electromagnetic emission in the earth's crust. The tendency for earthquake-prone areas to be used for modern urban and industrial development underlines the significance of this monograph. Its applications are extensive, including defrectoscopy, monitoring stress in mines, and the development of electromagnetic methods of earthquake prediction; and should interest geologists, geophysicists, and specialists in solid-state physics.
Earthquake Prediction
by Saumitra MukherjeeThis publication on earthquake prediction provides the fascinating research findings of earthquake prediction by studying space weather environment of the earth. The influence of changes in Sun is shown on the thermosphere, ionosphere, atmosphere and on lithosphere before the earthquakes.
Earthquake Prediction with Radio Techniques
by Masashi HayakawaThe latest achievements of earthquake prediction via radio communication systems, by the world's leading authority Prof. Hayakawa is one of the world leaders in the field of seismo-electromagnetics for EQ prediction and this area of research is still evolving Presents the fundamentals of radio communications and radio propagation, using the radio noises and propagation anomalies as a precursor of earthquakes Considers the combination of different kinds of seismogenic electromagnetic signals of both natural and artificial character Timely topic following the recent sequence of highly destructive earthquakes around the world
Earthquake Resistant Buildings
by M.Y.H. BangashThis concise work provides a general introduction to the design of buildings which must be resistant to the effect of earthquakes. A major part of this design involves the building structure which has a primary role in preventing serious damage or structural collapse. Much of the material presented in this book examines building structures. Due to the recent discovery of vertical components, it examines not only the resistance to lateral forces but also analyses the disastrous influence of vertical components. The work is written for Practicing Civil, Structural, and Mechanical Engineers, Seismologists and Geoscientists. It serves as a knowledge source for graduate students and their instructors.
Earthquake Resistant Concrete Structures
by Andreas KapposThis book introduces practising engineers and post-graduate students to modern approaches to seismic design, with a particular focus on reinforced concrete structures, earthquake resistant design of new buildings and assessment, repair and strengthening of existing buildings.
Earthquake Resistant Design, Protection, and Performance Assessment in Earthquake Engineering (Geotechnical, Geological and Earthquake Engineering #54)
by Tribikram Kundu Halûk Sucuoğlu Mustafa Erdik Azer Kasimzade Paolo ClementeThis book covers the latest advances in the popular research areas in Earthquake Engineering: Seismic Protection, Non-Destructive Testing and Structural Health Monitoring, as well as Seismic Performance Assessment. Part I includes seven chapters on seismic protection systems, a new passive isolation system for tower structures, frictional base isolation systems, period changeable isolation systems and presented applications, and recent developments in Italy, Japan and Macedonia. Also, particularities of design basis ground motion for long period structures are explained. Soil-Structure interaction models on the relevant subject are presented by classifying them. Part II presents three chapters on the new developments on Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for Performance Assessment of Structures. Applications and recent developments in USA, Canada, and Turkey are presented. Part III includes eight chapters on Seismic Performance Assessment. The subject of this part is presented on its following important components, and results are discussed: New criterion on performance based seismic design with application to a high-rise building; seismic design and performance assessment of a super tall concrete core wall building; seismic design and evaluation of high-performance modular tall timber building; challenges to detailed finite element analysis of entire building structures; seismic performance evaluation of traditional Japanese wooden houses with outer-frame reinforcement; dynamic response of pipeline, subjected to subsurface and surface blast explosion; bond behavior of sand-coated CFRP rebar embedded in concrete are given; seismic resistant large-span shell structures are presented. The book presents a concise summary of latest research findings, and will be of interest to a wide range of professionals in earthquake engineering, including graduate students, instructors, designers, and researches.
Earthquake Science and Engineering
by Ömer AydanEarthquakes form one of the categories of natural disasters that sometimes result in huge loss of human life as well as destruction of (infra)structures, as experienced during recent great earthquakes. This book addresses scientific and engineering aspects of earthquakes, which are generally taught and published separately. This book intends to fill the gap between these two fields associated with earthquakes and help seismologists and earthquake engineers better communicate with and understand each other. This will foster the development of new techniques for dealing with various aspects of earthquakes and earthquake-associated issues, to safeguard the security and welfare of societies worldwide. Because this work covers both scientific and engineering aspects in a unified way, it offers a complete overview of earthquakes, their mechanics, their effects on (infra)structures and secondary associated events. As such, this book is aimed at engineering professionals with an earth sciences background (geology, seismology, geophysics) or those with an engineering background (civil, architecture, mining, geological engineering) or with both, and it can also serve as a reference work for academics and (under)graduate students.
Earthquake Time Bombs
by Robert YeatsIn a media interview in January 2010, scientist Robert Yeats sounded the alarm on Port-au-Prince, Haiti, as an 'earthquake time bomb', a region at critical risk of major seismic activity. One week later, a catastrophic earthquake struck the city, leaving over 100,000 dead and triggering a humanitarian crisis. In this timely study, Yeats sheds new light on other earthquake hotspots around the world and the communities at risk. He examines these seismic threats in the context of recent cultural history, including economic development, national politics and international conflicts. Descriptions of emerging seismic resilience plans from some cities provide a more hopeful picture. Essential reading for policy-makers, infrastructure and emergency planners, scientists, students and anyone living in the shadow of an earthquake, this book raises the alarm so that we can protect our vulnerable cities before it's too late.
Earthquake, Blast and Impact: Measurement and effects of vibration
by Seced - The Society For Earthquake & Civil Engineering DynamicsThis volume consists of papers presented at the International Conference on Earthquake, Blast and Impact held at the University of Manchester Institute of Science and Technology, UK, 18-20 September 1991, organised by the Society for Earthquake and Civil Engineering Dynamics (SECED) and supported by the Institution of Civil Engineers, the Instituti