- Table View
- List View
Electromagnetic Fields and Radiation: Human Bioeffects and Safety
by Riadh W.Y. HabashThis reference explores the sources, characteristics, bioeffects, and health hazards of extremely low-frequency (ELF) fields and radio frequency radiation (RFR), analyzing current research as well as the latest epidemiological studies to assess potential risks associated with exposure and to develop effective safety guidelines.Compiles reports and investigations from four decades of study on the effect of nonionizing electromagnetic fields and radiation on human healthSummarizing modern engineering approaches to control exposure, Electromagnetic Fields and Radiation discusses:EM interaction mechanisms in biological systems Explorations into the impact of EM fields on free radicals, cells, tissues, organs, whole organisms, and the population Regulatory standards in the United States, Canada, Europe, and Asia Pacific Evaluation of incident fields from various EM sources Measurement surveys for various sites including power lines, substations, mobile systems, cellular base stations, broadcast antennas, traffic radar devices, heating equipment, and other sources Dosimetry techniques for the determination of internal EM fields Conclusions reached by the Food and Drug Administration, World Health Organization, and other institutions
Electromagnetic Fields and Waves in Fractional Dimensional Space
by Muhammad Zubair Qaisar Abbas Naqvi Muhammad Junaid MughalThis book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's equations in fractional space are derived by using modified vector differential operators.
Electromagnetic Fields and Waves: Microwave and mmWave Engineering with Generalized Macroscopic Electrodynamics (Textbooks in Telecommunication Engineering)
by Sergey M. Smolskiy Eugene I. NefyodovThis textbook is intended for a course in electromagnetism for upper undergraduate and graduate students. The main concepts and laws of classical macroscopic electrodynamics and initial information about generalized laws of modern electromagnetics are discussed, explaining some paradoxes of the modern theory. The reader then gets acquainted with electrodynamics methods of field analysis on the basis of wave equation solution. Emission physics are considered using an example of the Huygens-Fresnel-Kirchhoff canonic principle. The representation about strict electrodynamics task statement on the base of Maxwell equations, boundary conditions, emission conditions and the condition on the edge is given. Different classes of approximate boundary conditions are presented, which essentially simplify understanding of process physics. The canonic Fresnel functions are given and their generalization on the case of anisotropic impedance. The free waves in closed waveguides and in strip-slotted and edge-dielectric transmission lines are described. A large number of Mathcad programs for illustration of field patterns and its properties in different guiding structures are provided. The material is organized for self-study as well as classroom use.
Electromagnetic Fields in Biological Systems
by James C. LinSpanning static fields to terahertz waves, this volume explores the range of consequences electromagnetic fields have on the human body. Topics discussed include essential interactions and field coupling phenomena; electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields; dosimetry or coupling of ELF fields into biological systems; and the historical developments and recent trends in numerical dosimetry. It also discusses mobile communication devices and the dosimetry of RF radiation into the human body, exposure and dosimetry associated with MRI and spectroscopy, and available data on the interaction of terahertz radiation with biological tissues, cells, organelles, and molecules.
Electromagnetic Fields in Biology and Medicine
by Marko S. MarkovThrough a biophysical approach, Electromagnetic Fields in Biology and Medicine provides state-of-the-art knowledge on both the biological and therapeutic effects of Electromagnetic Fields (EMFs). The reader is guided through explanations of general problems related to the benefits and hazards of EMFs, step-by-step engineering processes, and basic r
Electromagnetic Fields of Wireless Communications: Biological and Health Effects
by Dimitris J. PanagopoulosThis book reflects contributions from experts in biological and health effects of Radio Frequency (RF)/Microwave and Extremely Low Frequency (ELF) Electromagnetic Fields (EMFs) used in wireless communications (WC) and other technological applications. Diverse topics related to physics, biology, pathology, epidemiology, and plausible biophysical and biochemical mechanisms of WC EMFs emitted by antennas and devices are included. Discussions on the possible consequences of fifth generation (5G) mobile telephony (MT) EMFs based on available data and correlation between anthropogenic EMF exposures and various pathological conditions such as infertility, cancer, electro-hypersensitivity, organic and viral diseases, and effects on animals, plants, trees, and environment are included. It further illustrates individual and public health protection and the setting of biologically- and epidemiologically-based exposure limits. Features: Covers biological and health effects, including oxidative stress, DNA damage, reproductive effects of mobile phones/antennas (2G, 3G, 4G), cordless phones, Wi-Fi, etc. Describes effects induced by real-life exposures by commercially available devices/antennas. Illustrates biophysical and biochemical mechanisms that fill the gap between recorded experimental and epidemiological findings and their explanations. Explores experimental and epidemiological facts and mechanisms of action. Provides explanations and protection tips. Transcends across physical, biological, chemical, health, epidemiological, and environmental aspects of the topic. This book is aimed at senior undergraduate/graduate students in physics, biology, medicine, bioelectromagnetics, electromagnetic biology, non-ionizing radiation biophysics, telecommunications, electromagnetism, bioengineering, and dosimetry.
Electromagnetic Fields, Environment and Health
by Anne Perrin Martine SouquesA good number of misconceptions are currently circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous assumptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing radiations, the authors review the main emission sources encountered in our daily environment. They summarize simply but as accurately as possible the current knowledge on their biological effects. The safety limits recommended by international organizations are presented for the different frequency ranges. This book is intended for doctors, teachers, scientists, students, policy makers and anyone else interested in a deeper understanding of the health effects of electromagnetic fields. Intended to serve a broad readership, everyone will approach it according to their respective level of curiosity and knowledge. It is neither an exhaustive inventory of all the studies made to date, nor a survey text focusing only on some chosen studies. Nor is the objective to present all the sources of non-ionizing radiations. Interested readers will be given the opportunity to broaden their knowledge, also by consulting the selected bibliography presented by the authors at the end of each chapter.
Electromagnetic Fields: Theory and Applications
by Ahmad Shahid Khan Saurabh Kumar MukerjiThe study of electromagnetic field theory is required for proper understanding of every device wherein electricity is used for operation. The proposed textbook on electromagnetic fields covers all the generic and unconventional topics including electrostatic boundary value problems involving two- and three-dimensional Laplacian fields and one- and two- dimensional Poissonion fields, magnetostatic boundary value problems, eddy currents, and electromagnetic compatibility. The subject matter is supported by practical applications, illustrations to supplement the theory, solved numerical problems, solutions manual and Powerpoint slides including appendices and mathematical relations. Aimed at undergraduate, senior undergraduate students of electrical and electronics engineering, it: Presents fundamental concepts of electromagnetic fields in a simplified manner Covers one two- and three-dimensional electrostatic boundary value problems involving Laplacian fields and Poissonion fields Includes exclusive chapters on eddy currents and electromagnetic compatibility Discusses important aspects of magneto static boundary value problems Explores all the basic vector algebra and vector calculus along with couple of two- and three-dimensional problems
Electromagnetic Foundations of Solar Radiation Collection
by Alan J. SangsterThis text seeks to illuminate, mainly for the electrical power engineers of the future, the topic of large scale solar flux gathering schemes, which arguably represent the major source of renewable power available. The aim of the content is to impart, from an electromagnetic perspective, a deep and sound understanding of the topic of solar flux collection, ranging from the characteristics of light to the properties of antennas. To do this five chapters are employed to provide a thorough grounding in relevant aspects of electromagnetism and electromagnetic waves including optics, electromagnetic radiation and reception, aperture antennas and array antennas and the quantum electrodynamics aspects of optical absorption, as it relates to photovoltaic techniques. The principles developed in these chapters are then used to underpin and elucidate the main chapters on photovoltaic collectors, concentrated solar power collectors, satellite based collection systems and optical nantennas. To establish the novel and transformative renewable technologies, which civilisation will soon require, in order to achieve sustainability quickly and effectively, the availability of professional engineers and scientists with a thorough and commanding grasp of the fundamental science is an absolutely essential prerequisite. This book provides this for solar power generating systems.
Electromagnetic Imaging for a Novel Generation of Medical Devices: Fundamental Issues, Methodological Challenges and Practical Implementation (Lecture Notes in Bioengineering)
by Lorenzo Crocco Francesca VipianaThis book offers the first comprehensive coverage of microwave medical imaging, with a special focus on the development of novel devices and methods for different applications in both the diagnosis and treatment of various diseases. Upon introducing the fundamentals of electromagnetic imaging, it guides the readers to their use in practice by providing extensive information on the corresponding measurement and testing techniques. In turn, it discusses current challenges in data processing and analysis, presenting effective, novel solutions, developed by different research groups. It also describes state-of-the-art medical devices, which were designed for specific applications, such as brain stroke monitoring, lymph node diagnosis, image-guided hyperthermia, and chemotherapy response monitoring. The chapters, which report on the results of the EU-funded project EMERALD (ElectroMagnetic imaging for a novel genERation of medicAL Devices) are written by leading European engineering groups in electromagnetic medical imaging, whose coordinated action is expected to accelerate the translation of this technology “from research bench to patient bedside”. All in all, this book offers an authoritative guide to microwave imaging, with a special focus on medical imaging, for electrical and biomedical engineers, and applied physicists and mathematicians. It is also intended to inform medical doctors and imaging technicians on the state-of-the-art in non-invasive imaging technologies, at the purpose of inspiring and fostering the translation of research into clinical prototypes, by promoting a stronger collaboration between academic institutions, industrial partners, hospitals, and university medical centers.
Electromagnetic Information Leakage and Countermeasure Technique: Translated by Liu Jinming, Liu Ying, Zhang Zidong, Liu Tao
by Taikang Liu Yongmei LiThis book presents a model of electromagnetic (EM) information leakage based on electromagnetic and information theory. It discusses anti-leakage, anti-interception and anti-reconstruction technologies from the perspectives of both computer science and electrical engineering. In the next five years, the threat posed by EM information leakage will only become greater, and the demand for protection will correspondingly increase. The book systematically introduces readers to the theory of EM information leakage and the latest technologies and measures designed to counter it, and puts forward an EM information leakage model that has established the foundation for new research in this area, paving the way for new technologies to counter EM information leakage. As such, it offers a valuable reference guide for all researchers and engineers involved in EM information leakage and countermeasures.
Electromagnetic Interference and Electromagnetic Compatibility: Principles, Design, Simulation, and Applications
by L. Ashok Kumar Y. Uma MaheswariElectromagnetic compatibility is concerned with the generation, transmission, and reception of electromagnetic energy. The book discusses about the basic principles of electromagnetic interference (EMI) and electromagnetic compatibility (EMC) including causes, events, and mitigation of issues. The design procedures for EMI filter, the types of filters, and filter implementation methods are explained. The simulation of printed circuit board designs using different software and a step-by-step method is discussed in detail. This book addresses the gap between theory and practice using case studies with design, experiments, and supporting analysis. Features:• Discusses about the basic principles of EMI/EMC including causes and events.• Makes readers understand the problems in different applications because of EMI/EMC and the reducing methods.• Explores real-world case studies with code to provide hands-on experience.• Reviews design strategies for mitigation of noise.• Includes MATLAB, PSPICE, and ADS simulations for designing EMI Filter circuits. The book is aimed at graduate students and researchers in electromagnetics, circuit and systems, and electrical engineering.
Electromagnetic Inverse Profiling: Theory and Numerical Implementation
by Antonius Gregorius TijhuisThis monograph is concerned with the direct-scattering of electromagnetic waves by one- and two-dimensional objects, and the use of this technique in one-dimensional inverse profiling. It discusses results of research into the method of this technique and its application to specific problems.Several techniques are presented for solving transient electromagnetic direct-scattering problems. These problems are solved indirectly, via a Fourier or Laplace transformation to the real- or complex-frequency domain, as well as directly in the time domain.For the one-dimensional case it is described how the special features of the respective techniques are also exploited to tackle the inverse problem of determining obstacle properties from the scattered field excited by a known incident field. The problems of both identification and of inverse profiling are addressed.For a range of specific problems representative numerical results are presented and discussed. Particular attention is devoted to the numerical implementation and to the physical interpretation of the theoretical numerical results obtained. With respect to inverse-scattering the emphasis is on the band-limiting effects that may arise due to approximation errors in the various inversion schemes employed.
Electromagnetic Metal Forming for Advanced Processing Technologies (Materials Forming, Machining And Tribology)
by Yuriy Batygin Marina Barbashova Oleh SabokarThis book focuses on the new direction of magnetic pulsed metal working by attraction of sheet metals. In the first part, the authors focus on the magnetic pulsed pressure for forming of inner angles in the sheet metals. Part 2 of the book presents the magnetic pulsed attraction of thin-walled metals. In the third and last part, the authors present the practical realization of external restoring the dents on the car bodies by electromagnetic metal forming attraction.
Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications
by Yan Shi Tie Jun Cui Long LiThe subject of this book is the fast-developing area of research known as metamaterials/metasurfaces and some of their engineering applications. This book comprehensively presents the state of the art of metamaterials/metasurfaces from theory to applications. The theoretical side includes electrodynamics of left-handed medium, generalized Snell's law, digital coding metamaterials/metasurfaces, group theory of metamaterials, information metamaterials and metasurfaces, etc. On the application side, a wide range of design examples are discussed, including metamaterial antennas, electromagnetic interference, frequency selective surfaces, wireless power transmission and energy harvesting, cloaking and radar cross section reduction, orbital angular momentum, wireless communication, imaging, etc. The book provides researchers, engineers, and graduate students with a variety of new discoveries, results, information, and knowledge in the field of metamaterials and metasurfaces.
Electromagnetic Metamaterials: Modern Insights into Macroscopic Electromagnetic Fields (Springer Series in Materials Science #287)
by Kazuaki SakodaThis book presents novel and fundamental aspects of metamaterials, which have been overlooked in most previous publications, including chirality, non-reciprocity, and the Dirac-cone formation. It also describes the cutting-edge achievements of experimental studies in the last several years: the development of high-regularity metasurfaces in optical frequencies, high-performance components in the terahertz range, and active, chiral, nonlinear and non-reciprocal metamaterials in the microwave range. Presented here are unique features such as tunable metamaterials based on the discharge plasma, selective thermal emission from plasmonic metasurfaces, and the classical analogue of the electromagnetically induced transparency. These most advanced research achievements are explained in understandable terms by experts in each topic. The descriptions with many practical examples facilitate learning, and not only researchers and experts in this field but also graduate students can read the book without difficulty. The reader finds how these new concepts and new developments are being utilized for practical applications.
Electromagnetic Metasurfaces: Theory and Applications (Wiley - IEEE)
by Christophe Caloz Karim AchouriDiscover a comprehensive exploration of recent developments and fundamental concepts in the applications of metasurfaces. In Electromagnetic Metasurfaces: Theory and Applications, distinguished researchers and authors Karim Achouri and Christophe Caloz deliver an introduction to the fundamentals and applications of metasurfaces and an insightful analysis of recent and future developments in the field. The book describes the precursors and history of metasurfaces before continuing on to an exploration of the physical insights that can be gleaned from the material parameters of the metasurface. You’ll learn how to compute the fields scattered by a metasurface with known material parameters being illuminated by an arbitrary incident field, as well as how to realize a practical metasurface and relate its material parameters to its physical structures. The authors provide examples to illustrate all the concepts discussed in the book to improve and simplify reader understanding. Electromagnetic Metasurfaces concludes with an incisive discussion of the likely future directions and research opportunities in the field. Readers will also benefit from the inclusion of: A thorough introduction to metamaterials, the concept of metasurfaces, and metasurface precursors An exploration of electromagnetic modeling and theory, including metasurfaces as zero-thickness sheets and bianisotropic susceptibility tensors A practical discussion of susceptibility synthesis, including four-parameters synthesis, more than four-parameters synthesis, and the addition of susceptibility components A concise treatment of scattered-field analysis, including approximate analytical methods, and finite-difference frequency-domain techniques Perfect for researchers in metamaterial sciences and engineers working with microwave, THz, and optical technologies, Electromagnetic Metasurfaces: Theory and Applications will also earn a place in the libraries of graduate and undergraduate students in physics and electrical engineering.
Electromagnetic Modeling by Finite Element Methods (Electrical and Computer Engineering)
by João Pedro Bastos Nelson SadowskiUnlike any other source in the field, this valuable reference clearly examines key aspects of the finite element method (FEM) for electromagnetic analysis of low-frequency electrical devices. The authors examine phenomena such as nonlinearity, mechanical force, electrical circuit coupling, vibration, heat, and movement for applications in the elect
Electromagnetic Nanomaterials: Properties and Applications
by Inamuddin Tariq AltalhiELECTROMAGNETIC METAMATERIALS The book presents an overview of metamaterials current state of development in several domains of application such as electromagnetics, electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics. Metamaterials have become a hot topic in the scientific community in recent years due to their remarkable electromagnetic properties. Metamaterials have the ability to alter electromagnetic and acoustic waves in ways that bulk materials cannot. Electromagnetic Metamaterials: Properties and Applications discusses a wide range of components to make metamaterial-engineered devices. It gives an overview of metamaterials’ current stage of development in a variety of fields such as remote aerospace applications, medical appliances, sensor detectors and monitoring devices of infrastructure, crowd handling, smart solar panels, radomes, high-gain antennas lens, high-frequency communication on the battlefield, ultrasonic detectors, and structures to shield from earthquakes. Audience Researchers and engineers in electromagnetic and electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics.
Electromagnetic Performance Analysis of Graded Dielectric Inhomogeneous Radomes (SpringerBriefs in Applied Sciences and Technology)
by Raveendranath U. Nair P. Mahima M. Suprava S. Vandana Mohammed P.S. YazeenThis book reports on a new radome wall configuration based on an inhomogeneous planar layer, which overcomes current fabrication constraints in radome design and yields improved electromagnetic (EM) characteristics. The book also includes a detailed description of radomes and antenna-radome interaction studies for different radome wall configurations. The radome wall was designed using the equivalent transmission line method (EQTLM), since it requires less computational speed and provides accurate results. In order to substantiate the accuracy of the results obtained using EQTLM, the simulated results based on full wave methods like CST Microwave Studio Suite are also included. The EM performance analysis of the antenna-radome system for two radome shapes, tangent ogive (for airborne applications) and hemispherical (for ground-based applications), was performed using Geometric Optics Method in conjunction with the Aperture Integration Method. To show the efficacy of the new design, a comparison of performance characteristics between the novel radome and conventional wall configurations is also included. Lastly, it presents antenna-radome interaction studies for various aperture distributions. The book offers a unique resource for all researchers working in the area of microwave radomes.
Electromagnetic Processes of Nuclear Excitation: From Direct Photoabsorption to Free Electron and Muon Capture (Springer Theses)
by Simone GargiuloFor decades, scientists have envisioned the possibility of storing energy in the form of nuclear excitations, resulting in specific nuclear configurations known as isomers. These unique metastable states have the ability to maintain their excited state for periods that range from several years to time spans exceeding the age of the Universe. However, despite numerous research efforts, achieving effective and practical control over isomer activation or depletion continues to be an unresolved challenge. This book delves into the world of isomers, beginning with an accessible overview of their essential properties and significance as long-duration energy storage solutions. Across the chapters, the book delves into diverse electromagnetic mechanisms responsible for nuclear excitation. It presents the ongoing debate surrounding the Nuclear Excitation by Electron Capture (NEEC) process, offering a comprehensivehistorical background that ranges from its early proposal to the latest tools employed for its investigation. The subsequent chapter explores the possibilities of using muons, introducing a novel process called Nuclear Excitation by Free Muon Capture (NEμC). The primary aim of these sections is to identify methods that could either increase the likelihood of these nuclear processes or provide real-time external manipulation over them. In the last chapter, the book revisits the process of nuclear photoabsorption in optical laser-generated plasma through experimental efforts, offering a fresh interpretation of existing literature results. Overall, the book delivers a clear and comprehensive overview, aiming to assist newcomers and established scientists in quickly grasping the core aspects of the subjects, possibly guiding their research endeavors. Hopefully, this resource will act as a catalyst for sparking new ideas while providing insights into the intricacies and opportunitiespresented by nuclear excitations within the realm of nuclear physics.
Electromagnetic Processing of Materials
by Shigeo AsaiThis book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrically conductive materials such as electromagnetic levitation, mixing, brake, and etc., which are caused by the Lorentz force. The fifth chapter treats magnetic processing of organic and non-organic materials such as magnetic levitation, crystal orientation, structural alignment and etc., which are induced by the magnetization force. This part is a new academic field named Magneto-Science, which focuses on the development of super-conducting magnets. This book is written so as to be understood by any graduate student in engineering courses but also to be of interest to engineers and researchers in industries.
Electromagnetic Radiation in Analysis and Design of Organic Materials: Electronic and Biotechnology Applications
by Andreea Irina Barzic Dana Ortansa Dorohoi Magdalena AfloriBridging condensed matter physics, photochemistry, photophysics, and materials science, Electromagnetic Radiation in Analysis and Design of Organic Materials: Electronic and Biotechnology Applications covers physical properties of materials in the presence of radiation from across the electromagnetic spectrum. It describes the optical, spectral, thermal, and morphological properties of a wide range of materials and their practical implications in electronic and biotechnologies. It discusses recent advances in the use of radiation in analysis of materials and design for advanced applications. The book contains experimental and theoretical issues that reflect the impact of radiation on materials characteristics highlighting their ease of analysis or adaptation for applications as optical filters, drug delivery systems, antimicrobial layers, amphetamine detectors, or liquid crystal displays.
Electromagnetic Radiation of Electrons in Periodic Structures
by Alexander PotylitsynPeriodic magnetic structures (undulators) are widely used in accelerators to generate monochromatic undulator radiation (UR) in the range from far infrared to the hard X-ray region. Another periodic crystalline structure is used to produce quasimonochromatic polarized photon beams via the coherent bremsstrahlung mechanism (CBS). Due to such characteristics as monochromaticity, polarization and adjustability, these types of radiation is of large interest for applied and basic research of accelerator-emitted radiation. The book provides a detailed overview of the fundamental principles behind electromagnetic radiation emitted from accelerated charged particles (e.g. UR, CBS, radiation of fast electrons in Laser flash fields) as well as a unified description of relatively new radiation mechanisms which attracted great interest in recent years. This are the so-called polarization radiation excited by the Coulomb field of incident particles in periodic structures, parametric X-rays, resonant transition radiation and the Smith-Purcell effect. Characteristics of such radiation sources and perspectives of their usage are discussed. The recent experimental results as well as their interpretation are presented.
Electromagnetic Radiations: Exposure and Impact
by Prutha Prashant Kulkarni Parikshit N.MahalleThe book delivers an understanding of emission theory and its effects on different strata of life. It contains seven chapters including probable remedial measures and solutions to increase reduced radiation life expectancy. The text explains important topics such as the compatibility of the human body and wireless communication, applications and effectiveness of radiating power, energy harvesting, green energy solutions, and the human nervous system.This book: Discusses topics related to radiation and electromagnetic emissions, including their sources, effects, and ways to reduce exposure. Covers various aspects of the impact of electromagnetic fields on health and the environment, including measurement and modeling techniques, exposure assessment, and health effects. Explains electromagnetic emissions and their applications, as well as the impact of radiation on living organisms, including flora, fauna, and human beings. Provides a detailed analysis of the effects of radiation on animal and plant life. Highlights the potential benefits of electromagnetic emissions and provides information on how to mitigate the negative effects of radiation. It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics, communications engineering, and physics.