Browse Results

Showing 21,076 through 21,100 of 73,931 results

Electromagnetic Wave Absorbing Materials: Fundamentals and Applications (Wiley Series in Materials for Electronic & Optoelectronic Applications)

by Hongjing Wu

Electromagnetic Wave Absorbing Materials Electromagnetic Wave Absorbing Materials presents information on the most promising electromagnetic wave absorbing materials, with timely coverage of both conventional and novel materials including 1D, 2D, and 3D materials. This book enables readers to address the growing specification needs in the field through optimizing electromagnetic parameters and promoting interface polarization, two key properties for wireless technology in electronic applications. Edited by three highly qualified academics with significant relevant research experience, Electromagnetic Wave Absorbing Materials includes discussions on: Materials including ferrites, graphene, carbon‐based composite absorbers, SiC ceramics, MOFs, and meta‐material based absorbers Recent advances in the field surrounding composite absorbers, conductive polymers, and ceramics, and other materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Applications including terrestrial and satellite communication (software radio, GPS, and satellite TV), environmental monitoring via satellite, and EMI shielding, as well as stealth applications Electromagnetic Wave Absorbing Materials is an essential reference on the subject for researchers and advanced students in the chemical, electronics, and communications industries, as well as R&D scientists at companies such as Apple, HUAWEI, and China Aerospace Science and Technology Corp (CASC).

Electromagnetic Wave Absorption and Shielding Materials

by Wei Lu Hongtao Guan

This book reveals the latest research findings and innovations in electromagnetic wave absorption and shielding by exploring the design and application of absorbent materials, the optimization of shielding structures and the improvement of testing and evaluation methods.From conductive materials to magnetic materials, and composite materials to nanomaterials, Electromagnetic Wave Absorption and Shielding Materials details the characteristics and advantages of various absorbent materials and explains their applications in electromagnetic wave absorption and shielding. It then introduces the different methods of electromagnetic shielding, including structural shielding and material shielding. The book also studies experimental and testing techniques, including measurement methods and evaluation criteria for electromagnetic wave absorption performance.The book will be of interest to researchers and graduate students in electromagnetic compatibility, materials science and engineering.

Electromagnetic Wave Diffraction by Conducting Screens pseudodifferential operators in diffraction problems

by Yu. G. Smirnov

This book covers the latest problems of modern mathematical methods for three-dimensional problems of diffraction by arbitrary conducting screens. This comprehensive study provides an introduction to methods of constructing generalized solutions, elements of potential theory, and other underlying mathematical tools. The problem settings, which turn out to be extremely effective, differ significantly from the known approaches and are based on the original concept of vector spaces 'produced' by Maxwell equations. The formalism of pseudodifferential operators enables to prove uniqueness theorems and the Fredholm property for all problems studied. Readers will gain essential insight into the state-of-the-art technique of investigating three-dimensional problems for closed and unclosed screens based on systems of pseudodifferential equations. A detailed treatment of the properties of their kernels, in particular degenerated, is included. Special attention is given to the study of smoothness of generalized solutions and properties of traces.

Electromagnetic Wave Scattering by Aerial and Ground Radar Objects

by Oleg I. Sukharevsky

Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principle Contains integral field representations enabling the study of scattering from various layered structures Describes scattering computation techniques for objects with surface fractures and radar-absorbent coatings Covers elimination of "terminator discontinuities" appearing in the method of physical optics in general bistatic cases Includes radar cross-section (RCS) statistics and high-range resolution profiles of assorted aircrafts, cruise missiles, and tanks Complete with radar backscattering diagrams, echo signal amplitude probability distributions, and other valuable reference material, Electromagnetic Wave Scattering by Aerial and Ground Radar Objects is ideal for scientists, engineers, and researchers of electromagnetic wave scattering, computational electrodynamics, and radar detection and recognition algorithms.

Electromagnetic Waves (Second Edition)

by Carlo G. Someda

Adapted from a successful and thoroughly field-tested Italian text, the first edition of Electromagnetic Waves was very well received. Its broad, integrated coverage of electromagnetic waves and their applications forms the cornerstone on which the author based this second edition. <P><P>Working from Maxwell's equations to applications in optical communications and photonics, Electromagnetic Waves, Second Edition forges a link between basic physics and real-life problems in wave propagation and radiation. <P><P>Accomplished researcher and educator Carlo G. Someda uses a modern approach to the subject. Unlike other books in the field, it surveys all major areas of electromagnetic waves in a single treatment. <P><P>The book begins with a detailed treatment of the mathematics of Maxwell's equations. It follows with a discussion of polarization, delves into propagation in various media, devotes four chapters to guided propagation, links the concepts to practical applications, and concludes with radiation, diffraction, coherence, and radiation statistics. <P><P>This edition features many new and reworked problems, updated references and suggestions for further reading, a completely revised appendix on Bessel functions, and new definitions such as antenna effective height. <P><P>Illustrating the concepts with examples in every chapter, Electromagnetic Waves, Second Edition is an ideal introduction for those new to the field as well as a convenient reference for seasoned professionals.

Electromagnetic Waves 1: Maxwell's Equations, Wave Propagation

by Pierre-Noël Favennec

Electromagnetic Waves 1 examines Maxwell’s equations and wave propagation. It presents the scientific bases necessary for any application using electromagnetic fields, and analyzes Maxwell’s equations, their meaning and their resolution for various situations and material environments. These equations are essential for understanding electromagnetism and its derived fields, such as radioelectricity, photonics, geolocation, measurement, telecommunications, medical imaging and radio astronomy. This book also deals with the propagation of electromagnetic, radio and optical waves, and analyzes the complex factors that must be taken into account in order to understand the problems of propagation in a free and confined space. Electromagnetic Waves 1 is a collaborative work, completed only with the invaluable contributions of Ibrahima Sakho, Hervé Sizun and JeanPierre Blot, not to mention the editor, Pierre-Noël Favennec. Aimed at students and engineers, this book provides essential theoretical support for the design and deployment of wireless radio and optical communication systems.

Electromagnetic Waves 2: Antennas

by Pierre-Noël Favennec

Electromagnetic Waves 2 examines antennas in the field of radio waves. It analyzes the conditions of use and the parameters that are necessary in order to create an effective antenna. This book presents antennas’ definitions, regulations and fundamental equations, and describes the various forms of antennas that can be used in radio: horns, waveguides, coaxial cables, printed and miniature antennas. It presents the characterization methods and the link budgets as well as the digital methods that make the fine calculation of radio antennas possible. Electromagnetic Waves 2 is a collaborative work, completed only with the invaluable contributions of Ibrahima Sakho, Hervé Sizun and JeanPierre Blot, not to mention the editor, Pierre-Noël Favennec. Aimed at students and engineers, this book provides essential theoretical support for the design and deployment of wireless radio and optical communication systems.

Electromagnetic Waves and Optics: A Linear Systems Approach

by Navin Khaneja

The book explores electromagnetic (EM) waves, which are present everywhere—from radio, television, and cell phones to satellite dishes, antennas, and WiFi. The propagation of EM waves is governed by Maxwell's equations. When these waves pass through a medium, they slow down and refract, while in a metallic medium, they are reflected. Metallic boxes and pipes can store and direct EM waves, known as cavities and waveguides. Oscillating currents generate and transmit EM waves through antennas, allowing for long-distance communication after the waves propagate. Since oscillating currents emit EM waves, the author uses coaxial cables and transmission lines to reduce radiation and carry high-frequency currents efficiently. EM waves at very high frequencies in the optical range are responsible for transmitting visual information. The author also discusses lenses and optical instruments like telescopes and microscopes, which are used to magnify optical signals. Additionally, the quantum mechanical origins of a material’s permittivity, which affects the speed of light through the medium, are examined.

Electromagnetic Waves, Materials, and Computation with MATLAB

by Dikshitulu K. Kalluri

Readily available commercial software enables engineers and students to perform routine calculations and design without necessarily having a sufficient conceptual understanding of the anticipated solution. The software is so user-friendly that it usually produces a beautiful colored visualization of that solution, often camouflaging the fact that t

Electromagnetic and Acoustic Wave Tomography: Direct and Inverse Problems in Practical Applications

by Nathan Blaunstein Vladimir Yakubov

This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.

Electromagnetic and Optical Pulse Propagation 2

by Kurt E. Oughstun

Electromagnetic & Optical Pulse Propagation presents a detailed, systematic treatment of the time-domain electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in homogeneous, isotropic media which exhibit both temporal frequency dispersion and attenuation. The development is mathematically rigorous with strict adherence to the fundamental physical principle of causality. Approximation methods are based upon mathematically well-defined asymptotic techniques that are based upon the saddle point method. A detailed description is given of the asymptotic expansions used. Meaningful exercises are given throughout the text to help the reader's understanding of the material, making the book a useful graduate level text in electromagnetic wave theory for both physics, electrical engineering and materials science programs. Both students and researchers alike will obtain a better understanding of time domain electromagnetics as it applies to electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and the health and safety issues associated with ultrawideband pulsed fields. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debys model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation.

Electromagnetic and Optical Pulse Propagation: Volume 1: Spectral Representations in Temporally Dispersive Media (Springer Series in Optical Sciences #224)

by Kurt E. Oughstun

This volume presents a detailed, rigorous treatment of the fundamental theory of electromagnetic pulse propagation in causally dispersive media that is applicable to dielectric, conducting, and semiconducting media. Asymptotic methods of approximation based upon saddle point methods are presented in detail.

Electromagnetic and Optical Pulse Propagation: Volume 2: Temporal Pulse Dynamics in Dispersive Attenuative Media (Springer Series in Optical Sciences #225)

by Kurt E. Oughstun

In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media. Volume 1 covers spectral representations in temporally dispersive media.

Electromagnetic, Mechanical, and Transport Properties of Composite Materials (Surfactant Science)

by Rajinder Pal

In the design, processing, and applications of composite materials, a thorough understanding of the physical properties is required. It is important to be able to predict the variations of these properties with the kind, shape, and concentration of filler materials. The currently available books on composite materials often emphasize mechanical pro

Electromagnetics (Electrical Engineering Textbook Ser.)

by Michael J. Cloud Edward J. Rothwell

<p>Providing an ideal transition from introductory to advanced concepts, Electromagnetics, Second Edition builds a foundation that allows electrical engineers to confidently proceed with the development of advanced EM studies, research, and applications. <p>This second edition of a popular text continues to offer coverage that spans the entire field, from electrostatics to the integral solutions of Maxwell’s equations. The book provides a firm grounding in the fundamental concepts of electromagnetics and bolsters understanding through the use of classic examples in shielding, transmission lines, waveguides, propagation through various media, radiation, antennas, and scattering. Mathematical appendices present helpful background information in the areas of Fourier transforms, dyadics, and boundary value problems. The second edition adds a new and extensive chapter on integral equation methods with applications to guided waves, antennas, and scattering. <p>Utilizing the engaging style that made the first edition so appealing, this second edition continues to emphasize the most enduring and research-critical electromagnetic principles.</p>

Electromagnetics Made Easy

by S. Balaji

This book is intended to serve as an undergraduate textbook for a beginner’s course in engineering electromagnetics. The present book provides an easy and simplified understanding of the basic principles of electromagnetics. Abstract theory has been explained using real life examples making it easier for the reader to grasp the complicated concepts. An introductory chapter on vector calculus and the different coordinate systems equips the readers with the prerequisite knowledge to learn electromagnetics. The subsequent chapters can be grouped into four broad sections – electrostatics, magnetostatics, time varying fields, and applications of electromagnetics. Written in lucid terms, the text follows a sequential presentation of the topics, and discusses the relative merits and demerits of each method. Each chapter includes a number of examples which are solved rigorously along with pictorial representations. The book also contains about 400 figures and illustrations which help students visualize the underlying physical concepts. Several end-of-chapter problems are provided to test the key concepts and their applications. Thus the book offers a valuable resource for both students and instructors of electrical, electronics and communications engineering, and can also be useful as a supplementary text for undergraduate physics students.

Electromagnetics and Network Theory and their Microwave Technology Applications

by Robert Weigel Stefan Lindenmeier

This volume provides a discussion of the challenges and perspectives of electromagnetics and network theory and their microwave applications in all aspects. It collects the most interesting contribution of the symposium dedicated to Professor Peter Russer held in October 2009 in Munich.

Electromagnetics for Electrical Machines

by Saurabh Kumar Mukerji Ahmad Shahid Khan Yatendra Pal Singh

Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge. Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book: Reviews Maxwell’s equations and scalar and vector potentials Describes the special cases leading to the Laplace, Poisson’s, eddy current, and wave equations Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems Discusses the Schwarz–Christoffel transformation, as well as the determination of airgap permeance Addresses the skin effects in circular conductors and eddy currents in solid and laminated iron cores Contains examples relating to the slot leakage inductance of rotating electrical machines, transformer leakage inductance, and theory of hysteresis machines Presents analyses of EMFs in laminated-rotor induction machines, three-dimensional field analyses for three-phase solid rotor induction machines, and more Electromagnetics for Electrical Machines makes an ideal text for postgraduate-level students of electrical engineering, as well as of physics and electronics and communication engineering. It is also a useful reference for research scholars concerned with problems involving electromagnetics.

Electromagnetics for Electrical Machines

by Saurabh Kumar Mukerji Ahmad Shahid Khan Yatendra Pal Singh

Electromagnetics for Electrical Machines offers a comprehensive yet accessible treatment of the linear theory of electromagnetics and its application to the design of electrical machines. Leveraging valuable classroom insight gained by the authors during their impressive and ongoing teaching careers, this text emphasizes concepts rather than numerical methods, providing presentation/project problems at the end of each chapter to enhance subject knowledge. Highlighting the essence of electromagnetic field (EMF) theory and its correlation with electrical machines, this book: Reviews Maxwell’s equations and scalar and vector potentials Describes the special cases leading to the Laplace, Poisson’s, eddy current, and wave equations Explores the utility of the uniqueness, generalized Poynting, Helmholtz, and approximation theorems Discusses the Schwarz–Christoffel transformation, as well as the determination of airgap permeance Addresses the skin effects in circular conductors and eddy currents in solid and laminated iron cores Contains examples relating to the slot leakage inductance of rotating electrical machines, transformer leakage inductance, and theory of hysteresis machines Presents analyses of EMFs in laminated-rotor induction machines, three-dimensional field analyses for three-phase solid rotor induction machines, and more Electromagnetics for Electrical Machines makes an ideal text for postgraduate-level students of electrical engineering, as well as of physics and electronics and communication engineering. It is also a useful reference for research scholars concerned with problems involving electromagnetics.

Electromagnetics of Time Varying Complex Media: Frequency and Polarization Transformer, Second Edition

by Dikshitulu K. Kalluri

Completely revised and updated to reflect recent advances in the fields of materials science and electromagnetics, Electromagnetics of Time Varying Complex Media, Second Edition provides a comprehensive examination of current topics of interest in the research community—including theory, numerical simulation, application, and experimental work. Written by a world leader in the research of frequency transformation in a time-varying magnetoplasma medium, the new edition of this bestselling reference discusses how to apply a time-varying medium to design a frequency and polarization transformer. This authoritative resource remains the only electromagnetic book to cover time-varying anisotropic media, Frequency and Polarization Transformer based on a switched magnetoplasma medium in a cavity, and FDTD numerical simulation for time-varying complex medium. Providing a primer on the theory of using magnetoplasmas for the coherent generation of tunable radiation, early chapters use a mathematical model with one kind of complexity—eliminating the need for high-level mathematics. Using plasma as the basic medium to illustrate various aspects of the transformation of an electromagnetic wave by a complex medium, the text highlights the major effects of each kind of complexity in the medium properties. This significantly expanded edition includes: Three new parts: (a) Numerical Simulation: FDTD Solution, (b) Application: Frequency and Polarization Transformer, and (c) Experiments A slightly enhanced version of the entire first edition, plus 70% new material Reprints of papers previously published by the author—providing researchers with complete access to the subject The text provides the understanding of research techniques useful in electro-optics, plasma science and engineering, microwave engineering, and solid state devices. This complete resource supplies an accessible treatment of the effect of time-varying parameters in conjunction with one or more additional kinds of complexities in the properties of particular mediums.

Electromagnetics through the Finite Element Method: A Simplified Approach Using Maxwell's Equations

by José Roberto Cardoso

Shelving Guide: Electrical Engineering Since the 1980s more than 100 books on the finite element method have been published, making this numerical method the most popular. The features of the finite element method gained worldwide popularity due to its flexibility for simulating not only any kind of physical phenomenon described by a set of differential equations, but also for the possibility of simulating non-linearity and time-dependent studies. Although a number of high-quality books cover all subjects in engineering problems, none of them seem to make this method simpler and easier to understand. This book was written with the goal of simplifying the mathematics of the finite element method for electromagnetic students and professionals relying on the finite element method for solving design problems. Filling a gap in existing literature that often uses complex mathematical formulas, Electromagnetics through the Finite Element Method presents a new mathematical approach based on only direct integration of Maxwell’s equation. This book makes an original, scholarly contribution to our current understanding of this important numerical method.

Electromagnetics, Control and Robotics: A Problems & Solutions Approach

by Harish Parthasarathy

This book covers a variety of problems, and offers solutions to some, in:• Statistical state and parameter estimation in nonlinear stochastic dynamical system in both the classical and quantum scenarios.• Propagation of electromagnetic waves in a plasma as described by the Boltzmann Kinetic Transport Equation.• Classical and Quantum General Relativity. It will be of use to Engineering undergraduate students interested in analysing the motion of robots subject to random perturbation, and also to research scientists working in Quantum Filtering.

Electromagnetism for Engineers

by Andrew J. Flewitt

Electromagnetism for Engineers An easily accessible textbook to introduce the power of electromagnetism Electromagnetism can be a difficult subject to grasp and to teach. Much of what we take for granted in modern life is enabled by electromagnetic effects, but it isn’t always easy to understand the impact of electromagnetism compared to other areas of engineering, such as mechanics, which are more tangibly observed and felt. Although electromagnetism is a crucial and important branch of physics with elegant mathematics, many students can find the study of electromagnetism inaccessible. It is crucial for students of electrical and electronic engineering and physics to have a strong understanding of electromagnetism and how it impacts communications, power generation and transmission, semiconductor devices, motors, and more. Electromagnetism for Engineers aims to develop a student’s understanding of electromagnetism in the context of real effects and how they apply to such applications, whilst maintaining the sophistication of the mathematics that can be used to give deeper insight. It begins by describing the fundamentals of electromagnetism before a more detailed discussion of the basic concepts developed for specific application areas. It then considers the application of electromagnetism to transmission lines, antennas, and waveguides. Electromagnetism for Engineers readers will find: A unique approach that illustrates the link between real-life applications and fundamental theory of electromagnetism Clear, concise language to help students gain a full understanding of the subject Carefully designed figures to illustrate points throughout the book Accompanying website at www.wiley.com/go/flewitt1418 Electromagnetism for Engineers has been written as a textbook for undergraduates studying electronic or electrical engineering. The manual can also be of interest to physics students and??to graduate-level students desirous of having a general book on electromagnetism. It is also a useful reference for professional engineers looking for a refresher on the fundamentals of electromagnetism.

Electromagnetism for Signal Processing, Spectroscopy and Contemporary Computing: Fundamentals and Applications

by Prabhakar Misra Brijesh Kumbhani Khurshed Ahmad Shah Raul F. Garcia-Sanchez

This comprehensive textbook will help readers to acquire a thorough understanding of the fundamentals of electromagnetism and its applications in various areas including spectroscopy, signal processing and contemporary computation. The text introduces the principals and applications of electricity, magnetism and electromagnetic theory which is foundation for communication systems, spectroscopy, and modern computing. It is followed by discussing the digital systems and their importance in computing, difference between digital signal transmission and wireless media, visualization techniques and useful simulation and computational techniques, besides advances in quantum computing. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics and communication engineering, this textbook: Provides fundamentals of electromagnetism and its applications in a single volume. Covers recent developments in computing and artificial intelligence. Discussion digital signal processing and wireless communication in depth. Covers advanced applications of electromagnetism in communication, spectroscopy, and computing. Discusses Computer Modelling & Simulation, Artificial Intelligence, and Quantum Computing.

Electromagnetism: With Solved Problems (Undergraduate Texts in Physics)

by Hiqmet Kamberaj

Any curriculum involving science and/or engineering will eventually find itself entering the realm of physics. This book seeks to introduce students to a number of the fundamental concepts in physics and illustrate how different theories were developed out of physical observations and phenomena. The book presents multi-chapter sections on electrostatics, magnetism and electromagnetic waves, with eyes on both the past and the future, touching, along the way, on Coulomb, Gauss, Maxwell, Ohm, Biot-Savart, Ampere, Faraday, Fresnel and Lorentz. The book also contains an appendix that provides the reader with a portion of the mathematical background of vector analysis and vector differential operators. The book approaches its topics through a focus on examples and problem-solving techniques, illustrating vividly how physical theories are applied to problems in engineering and science. The book is primarily aimed at undergraduate students in these two fields, but it also features chapters that are geared towards senior undergraduates working on their final year theses.

Refine Search

Showing 21,076 through 21,100 of 73,931 results