- Table View
- List View
Introduction to Sustainability
by Robert BrinkmannIntroduction to Sustainability is the first major textbook to review major themes in the cutting-edge field of sustainability. The book is suitable for introductory interdisciplinary courses on sustainability, as well as those in the fields of geography, geology, sociology, planning, political science, and anthropology. Brinkmann’s book allows students to see the world in new ways while also encouraging them to become part of the change needed to ensure the long-term sustainability of the planet. The text includes material on the development of the field of sustainability; environmental sustainability issues like water, food, and energy; social sustainability themes like environmental justice and transportation; and economic sustainability topics like green businesses and economic development. The book concludes with a chapter on sustainability issues in college and universities. Brinkmann intersperses many fascinating case studies and text boxes that encourage students to deeply explore the material. This is a book that not only organizes the complex field of sustainability, but also encourages students to take action to make the world a better place.
Introduction to Sustainability Analytics
by Raghavan Ram RamananThe roles of corporate and public stewards and the nature of their social contract with society have been changing over the past two centuries, and those changes have accelerated in recent decades. Moreover, with increasing focus on sustainability factors from the marketplace (regulators, investors, financiers, and consumers), corporate sustainability disclosure is shifting from voluntary to vital. Corporate and public stewards are now responsible for their performance and services from cradle-to-grave: they must properly manage corporate social responsibility and integrate it into their global strategies, rather than consider it as merely a moral obligation or a risk/reputation management exercise. <P><P> Sustainability analytics, the critical link between sustainability and business strategy, helps professionals track, trend, and transform sustainability information into actionable insights across the value chain and life cycle, to enhance their sustainability performance and its disclosure. This book, Introduction to Sustainability Analytics, provides corporate and public stewards with a comprehensive understanding of how to determine which sustainability metrics are material to them and relevant to their business, and how to incorporate them into corporate strategy, resource allocation, and prioritization. Focusing on practical decision-making needs, it explains how to value and prioritize initiatives, and how to best allocate necessary resources through several real case studies and practical examples. <P><P> Features: <P><P> Examines pressing issues such as climate change, water scarcity, and environmental justice <P><P> Explains how to develop a business case and global strategy for social responsibility <P><P> Includes both corporate and public policy perspectives on sustainability economics <P><P> Covers emerging regulations on sustainability disclosure and responsible investing
Introduction to Sustainability for Engineers
by Toolseeram RamjeawonIntroduction to Sustainability for Engineers aims to incorporate sustainability into curricula for undergraduate engineering students. The book starts with an introduction to the concept of sustainability, outlining core principles for sustainable development to guide engineering practice and decision making, including key tools aimed at enabling, measuring and communicating sustainability. It also describes concepts as life cycle assessment, environmental economics, related institutional architecture and policy framework, business context of sustainability, and sustainable buildings and infrastructure. Appendices at the end of the book presents a summary of key concepts, strategies and tools introduced in the main text. Five Key Benefits: A comprehensive textbook for engineering students to develop competency in sustainability. Presents a framework for engineers to put sustainability into practice. Presents the link between sustainability and the design process. It shows the application of a sustainable engineering design process for putting sustainability into practice. There are well woven case studies and links to websites for learning in various engineering disciplines. Includes challenging exercises at the end of each chapter that will inspire students and stimulate discussion in the class.
Introduction to Sustainable Transports
by Bernard FavreTransport systems have to meet the mobility needs of people and commodities on all scales, from the local to the global level. Concerns about the energy, fumes and sound emissions produced, and about the safety, service quality, intelligence and lifecycle of the systems, etc. can all be included in a systemic approach. This approach can contribute to the development of sustainable solutions, for individual vehicles as well as for transport systems. Derived from an approach combining the social and physical sciences, these solutions result from the integration of physical objects, services and organizational processes, which involve several actors. Their harmonious organization contributes to the development of more virtuous transport systems for the future of urban and inter-urban mobility.
Introduction to System Science with MATLAB
by Gary Marlin Sandquist Zakary Robert WildeIntroduction to SYSTEM SCIENCE with MATLAB Explores the mathematical basis for developing and evaluating continuous and discrete systems In this revised Second Edition of Introduction to System Science with MATLAB®, the authors Gary Sandquist and Zakary Wilde provide a comprehensive exploration of essential concepts, mathematical framework, analytical resources, and productive skills required to address any rational system confidently and adequately for quantitative evaluation. This Second Edition is supplemented with new updates to the mathematical and technical materials from the first edition. A new chapter to assist readers to generalize and execute algorithms for systems development and analysis, as well as an expansion of the chapter covering specific system science applications, is included. The book provides the mathematical basis for developing and evaluating single and multiple input/output systems that are continuous or discrete. It offers the mathematical basis for the recognition, definition, quantitative modeling, analysis, and evaluation in system science. The book also provides: A comprehensive introduction to system science and the principles of causality and cause and effect operations, including their historical and scientific background A complete exploration of fundamental systems concepts and basic system equations, including definitions and classifications Practical applications and discussions of single-input systems, multiple-input systems, and system modeling and evaluation An in-depth examination of generalized system analysis methods and specific system science applications Perfect for upper-level undergraduate and graduate students in engineering, mathematics, and physical sciences, Introduction to System Science with MATLAB® will also earn a prominent place in libraries of researchers in the life and social sciences.
Introduction to SystemVerilog
by Ashok B. MehtaThis book provides a hands-on, application-oriented guide to the entire IEEE standard 1800 SystemVerilog language. Readers will benefit from the step-by-step approach to learning the language and methodology nuances, which will enable them to design and verify complex ASIC/SoC and CPU chips. The author covers the entire spectrum of the language, including random constraints, SystemVerilog Assertions, Functional Coverage, Class, checkers, interfaces, and Data Types, among other features of the language. Written by an experienced, professional end-user of ASIC/SoC/CPU and FPGA designs, this book explains each concept with easy to understand examples, simulation logs and applications derived from real projects. Readers will be empowered to tackle the complex task of multi-million gate ASIC designs.Provides comprehensive coverage of the entire IEEE standard SystemVerilog language;Covers important topics such as constrained random verification, SystemVerilog Class, Assertions, Functional coverage, data types, checkers, interfaces, processes and procedures, among other language features;Uses easy to understand examples and simulation logs; examples are simulatable and will be provided online;Written by an experienced, professional end-user of ASIC/SoC/CPU and FPGA designs.This is quite a comprehensive work. It must have taken a long time to write it. I really like that the author has taken apart each of the SystemVerilog constructs and talks about them in great detail, including example code and simulation logs. For example, there is a chapter dedicated to arrays, and another dedicated to queues - that is great to have! The Language Reference Manual (LRM) is quite dense and difficult to use as a text for learning the language. This book explains semantics at a level of detail that is not possible in an LRM. This is the strength of the book. This will be an excellent book for novice users and as a handy reference for experienced programmers. Mark GlasserCerebras Systems
Introduction to Systems Ecology (Applied Ecology and Environmental Management)
by Sven JorgensenPossibly the first textbook to present a practically applicable ecosystems theory, Introduction to Systems Ecology helps readers understand how ecosystems work and how they react to disturbances. It demonstrates-with many examples and illustrations-how to apply the theory to explain observations and to make quantitative calculations and predictions
Introduction to Systems Thinking and Interdisciplinary Engineering (Synthesis Lectures on Engineering, Science, and Technology)
by Horst CzichosThis concise textbook introduces a systems approach to technology, describing tribological, mechatronic, cyber-physical systems, and the technologic concept of Industry 4.0 to students in a range of engineering domains. “Technology” in this book refers to the totality of human-made, benefit-oriented products, based on engineered combinations of material, energy and information. Dr. Czichos examines technology in this volume in the context of systems thinking with regard to the following main technology areasTechnical systems with “interacting surfaces in relative motion” especially in mechanical engineering, production, and transport; including the analysis of friction-induced energy losses and wear-induced materials dissipation. Technical systems that require a combination of mechanics, electronics, controls, and computer engineering for needs of industry and society. Technical systems with a combination of mechatronics and internet communication. Cyber-physical Systems for the digitalization of Industry in the development project Industry 4.0.Considers technology as combination of the physical world and the digital virtual world of information and communication.Describes the product cycle of technical systems and the corner stones of technology: material, energy and information.Presents a holistic view of technology and engineering.
Introduction to THz Wave Photonics
by Xi-Cheng Zhang Jingzhou XuThe proposed book explores the science and technology related to terahertz wave technologies, including the latest research on electromagnetic waves with an introduction to continuous wave THz technology and an emphasis on pulsed THz technology. The book begins with a review of the history of THz wave generation and detection methods and moves on to discuss the THz wave interaction with matters and introduces unique applications developed for this most elusive wave.
Introduction to Technology
by Alan J. Pierce Dennis KarwatkaStudents will discover technology through project-based pedagogy with Glencoe's Introduction to Technology! Teachers and students are offered content that is driven by projects to facilitate hands-on understanding and learning, while academics are integrated in unit-based projects and chapter-based Technology Labs. Students are invited to play and "crack the code" with the Technology Time Machine game while learning the key content of the technology literacy standards. Prepare students for TSA competitive events with prep activities embedded throughout the content and end-of-chapter assessments. Rigorous academic content is fully supported, especially in math, geometry, and science, with STEM activities throughout. Point-of-use academic correlations are included to ease possible academic credit application. Teachers can meet Perkins mandates for academic excellence with extra activities in the Student Edition and in the Project Applications Workbook. Careers profiles, Tech Stars, Imagine This! and Eco Tech features enhance the content with relevant information and challenging activities.
Introduction to Technology (3rd edition)
by Alan J. Pierce Dennis KarwatkaIntroduction to Technology creates excitement in middle school students about the potential of technology! Introduction to Technology helps students understand and work with technology. The seven units of Introduction to Technology cover: Nature of Technology - why we study technology and its important concepts; Engineering Design - how technology works including design, problem solving, drafting and modeling; Communication, Biotechnology, Manufacturing, Construction and Transportation. Students will learn about technology and do technology.
Introduction to Technology Lab Manual
by Glencoe/McGraw-HillHands-on activities help students understand and apply key concepts.
Introduction to Terahertz Electronics
by Jae-Sung RiehThis book provides a practical guide to terahertz electronics, especially for readers with an electronics background. The author guides readers through the all the key concepts of terahertz electronics, including terahertz sources, detectors, and waveguides, together with reviews on key terahertz applications on spectroscopy, imaging, communication, and radar. This book will serve as a handy reference for graduate students and engineers in the field of terahertz with a viewpoint from electronics.Presents the topic of terahertz from electronics viewpoint;Designed to be particularly helpful for the readers familiar with semiconductor devices and circuits;Enables optics-based terahertz researchers to understand terahertz electronics;Based on the author’s extensive experience from both industry and academia.
Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping
by Valerie Randle Olaf Engler Stefan ZaeffererReflecting emerging methods and the evolution of the field, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping keeps mathematics to a minimum in covering both traditional macrotexture analysis and more advanced electron-microscopy-based microtexture analysis. The authors integrate the two techniques and address the subsequent need for a more detailed explanation of philosophy, practice, and analysis associated with texture analysis. The book illustrates approaches to orientation measurement and interpretation and elucidates the fundamental principles on which measurements are based. Thoroughly updated, this Third Edition of a best-seller is a rare introductory-level guide to texture analysis. Discusses terminology associated with orientations, texture, and their representation, as well as the diffraction of radiation, a phenomenon that is the basis for almost all texture analysis. Covers data acquisition, as well as representation and evaluation related to the well-established methods of macrotexture analysis. Updated to include experimental details of the latest transmission or scanning electron microscope-based techniques for microstructure analysis, including electron backscatter diffraction (EBSD). Describes how microtexture data are evaluated and represented and emphasizes the advances in orientation microscopy and mapping, and advanced issues concerning crystallographic aspects of interfaces and connectivity. Offers new and innovative grain boundary descriptions and examples. This book is an ideal tool to help readers in the materials sciences develop a working understanding of the practice and applications of texture.
Introduction to Thermal Cloaking: Theory and Analysis in Conduction and Convection
by Woon-Shing Yeung Ruey-Jen YangThis book introduces the fundamental concepts of thermal cloaking based on transformation theory and bilayer theory, under the conduction and convection heat transfer modes. It focuses on thermal cloaking with detailed explanations of the underlying theoretical bases leading to the primary thermal cloaking results in open literature, from an engineering perspective, and with practical application in mind. Also, the authors strive to present the materials with an emphasis on the related physical phenomena and interpretation, to the extent possible. Through this book, engineering students can grasp the fundamental ideas of thermal cloaking and the associated mathematics, thus being better able to initiate their own research and explore new ideas in thermal cloaking. While not intended to be a general reference in the vast field of thermal cloaking research, this book is a unique monograph addressing the theoretical and analytical aspects of thermal cloaking within the scope mentioned above. This book also contains many independent analytical solutions to thermal cloaking problems that are not available in open literature. It is suitable for a three-credit graduate or advanced undergraduate course in engineering science.
Introduction to Thermal and Fluid Engineering
by Allan D. Kraus James R. Welty Abdul AzizIntroduction to Thermal and Fluid Engineering combines coverage of basic thermodynamics, fluid mechanics, and heat transfer for a one- or two-term course for a variety of engineering majors. The book covers fundamental concepts, definitions, and models in the context of engineering examples and case studies. It carefully explains the methods used to evaluate changes in equilibrium, mass, energy, and other measurable properties, most notably temperature. It then also discusses techniques used to assess the effects of those changes on large, multi-component systems in areas ranging from mechanical, civil, and environmental engineering to electrical and computer technologies.Includes a motivational student study guide on downloadable resources to promote successful evaluation of energy systemsThis material helps readers optimize problem solving using practices to determine equilibrium limits and entropy, as well as track energy forms and rates of progress for processes in both closed and open thermodynamic systems. Presenting a variety of system examples, tables, and charts to reinforce understanding, the book includes coverage of: How automobile and aircraft engines work Construction of steam power plants and refrigeration systems Gas and vapor power processes and systems Application of fluid statics, buoyancy, and stability, and the flow of fluids in pipes and machinery Heat transfer and thermal control of electronic components Keeping sight of the difference between system synthesis and analysis, this book contains numerous design problems. It would be useful for an intensive course geared toward readers who know basic physics and mathematics through ordinary different
Introduction to Thermo-Fluids Systems Design
by Andrè Garcia McDonald Hugh MagandeA fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer’s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design Practical rules-of-thumb are included in the text as ‘Practical Notes’ to underline their importance in current practice and provide additional information Includes an instructor’s manual hosted on the book’s companion website
Introduction to Thermodynamics of Mechanical Fatigue
by Michael M. Khonsari Mehdi AmiriFatigue is probabilistic in nature and involves a complex spectrum of loading history with variable amplitudes and frequencies. Yet most available fatigue failure prediction methods are empirical and concentrate on very specific types of loading. Taking a different approach, Introduction to Thermodynamics of Mechanical Fatigue examines the treatmen
Introduction to Thin Film Transistors
by S. D. BrothertonIntroduction to Thin Film Transistors reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes.
Introduction to Time-Delay Systems
by Emilia FridmanThe beginning of the 21st century can be characterized as the" time-delay boom" leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course "Introduction to time-delay systems" for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.
Introduction to Topological Defects and Solitons: In Liquid Crystals, Magnets, and Related Materials (Lecture Notes in Physics #1032)
by Jonathan V. SelingerThis textbook introduces topological defects and solitons at a level suitable for advanced undergraduates and beginning graduate students in physics and materials science. It avoids the formal mathematics of topology, and instead concentrates on the physical properties of these topological structures. The first half of the book concentrates on fundamental principles of defects and solitons, and illustrates these principles with a single example—the xy model for 2D magnetic order. It begins by defining the concept of a winding number, and uses this concept to describe the topology of defects (vortices or disclinations) and solitons (domain walls), carefully identifying the similarities and differences between these two types of topological structures. It then goes on to discuss physical properties of defects and solitons, including free energy, dynamics, statistical mechanics, and coupling with curvature. It shows how these concepts emerge from a theory with variable magnitude of order, and hence how topology can be viewed as an approximation to physics. The second half goes on to explore a wider range of topological defects and solitons. First, it considers more complex types of order—2D nematic liquid crystals, 3D magnetic or liquid-crystal order, 2D or 3D crystalline solids—and shows how each type of order leads to specific topological structures. Next, it discusses defects and solitons that are characterized by 2D or 3D measuring surfaces, not just 1D loops, including hedgehogs, skyrmions, and hopfions. These structures are more complex, but they can still be understood using the same fundamental principles. A final chapter describes the formation of phases with regular arrays of defects or solitons.
Introduction to Topological Quantum Matter & Quantum Computation
by Tudor D. StanescuWhat is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and emphasizes the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the torric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems. Quantum computation is also presented using a broad perspective, which includes fundamental aspects of quantum mechanics, such as Bell's theorem, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and elements of classical and quantum information theory.
Introduction to Topological Quantum Matter & Quantum Computation
by Tudor D. StanescuWhat is "topological" about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid-state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation?Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture and emphasizing two major new paradigms in condensed matter physics – quantum topology and quantum information – this book is ideal for graduate students and researchers entering this field, as it allows for the fruitful transfer of ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-known topological insulators and superconductors and unveils the deep connections with quantum computation. It addresses key principles behind the classification of topological quantum phases and relevant mathematical concepts and discusses models of interacting and noninteracting topological systems, such as the toric code and the p-wave superconductor. The book also covers the basic properties of anyons, and aspects concerning the realization of topological states in solid state structures and cold atom systems.Topological quantum computation is also presented using a broad perspective, which includes elements of classical and quantum information theory, basic concepts in the theory of computation, such as computational models and computational complexity, examples of quantum algorithms, and key ideas underlying quantum computation with anyons. This new edition has been updated throughout, with exciting new discussions on crystalline topological phases, including higher-order topological insulators; gapless topological phases, including Weyl semimetals; periodically-driven topological insulators; and a discussion of axion electrodynamics in topological materials.Key Features:· Provides an accessible introduction to this exciting, cross-disciplinary area of research.· Fully updated throughout with new content on the latest result from the field.· Authored by an authority on the subject.Tudor Stanescu is a professor of Condensed Matter Theory at West Virginia University, USA. He received a B.S. in Physics from the University of Bucharest, Romania, in 1994 and a Ph.D. in Theoretical Physics from the University of Illinois at Urbana Champaign in 2002. He was a Postdoctoral Fellow at Rutgers University and at the University of Maryland from 2003 to 2009. He joined the Department of Physics and Astronomy at West Virginia University in Fall 2009. Prof. Stanescu’s research interests encompass a variety of topics in theoretical condensed matter physics including topological insulators and superconductors, topological quantum computation, ultra-cold atom systems in optical lattices, and strongly correlated materials, such as, for example, cuprate high-temperature superconductors. His research uses a combination of analytical and numerical tools and focuses on understanding the emergence of exotic states of matter in solid state and cold atom structures, for example, topological superconducting phases that host Majorana zero modes, and on investigating the possibilities of exploiting these states as physical platforms for quantum computation.
Introduction to Toxicology and Food
by Tomris AltugWith growing interest in the safety of foods, knowledge of food toxicology is gaining more importance every day. Introduction to Toxicology and Food provides a concise overview of both the science of toxicology and food toxicology. It presents easy-to-understand explanations of the concepts and principles of toxicology as a science, the toxicants f
Introduction to Transients in Electrical Circuits: Analytical and Digital Solution Using an EMTP-based Software (Power Systems)
by Benedito Donizeti Bonatto José Carlos Goulart de SiqueiraThis book integrates analytical and digital solutions through Alternative Transients Program (ATP) software, recognized for its use all over the world in academia and in the electric power industry, utilizing a didactic approach appropriate for graduate students and industry professionals alike.This book presents an approach to solving singular-function differential equations representing the transient and steady-state dynamics of a circuit in a structured manner, and without the need for physical reasoning to set initial conditions to zero plus (0+). It also provides, for each problem presented, the exact analytical solution as well as the corresponding digital solution through a computer program based on the Electromagnetics Transients Program (EMTP).Of interest to undergraduate and graduate students, as well as industry practitioners, this book fills the gap between classic works in the field of electrical circuits and more advanced works in the field of transients in electrical power systems, facilitating a full understanding of digital and analytical modeling and solution of transients in basic circuits.