Browse Results

Showing 49,651 through 49,675 of 74,074 results

Polarimetric Microwave Imaging

by Zhen Yang Ruliang Yang Haiying Li Lulu Tan Bowei Dai Xiuqing Liu

This book introduces readers to the polarimetric synthetic aperture radar (PolSAR) system, its information processing, and imaging applications. The content is divided into three main parts: Part I, on the research scope of PolSAR, addresses the underlying theory and system design, polarimetric SAR interferometry (PolInSAR), compact PolSAR, and calibration of PolSAR. Part II, which focuses on information processing, highlights the new theories and methods used in PolSAR, such as statistical properties analysis for images, speckle reduction, image enhancement, polarimetric target decomposition, and classification of PolSAR target detection. In turn, Part III, on the applications of polarimetric SAR, discusses the geophysical parameter retrieval of PolSAR data, polarimetric interferometric SAR information processing, compact polarimetric interferometric SAR information processing, and the effects of terrain tilt in azimuth direction on PolSAR data.The book provides a comprehensive and systematic guide to the system, integrating theory and practice, and has a highly application-oriented focus. Presenting new theories, methods and achievements made in polarimetric microwave imaging in recent years, it offers a valuable asset for researchers, engineers and scientists in the area of remote sensing and radar imaging. It can also be used as a reference book for university educators and graduate students.

Polarimetric Radar Imaging: From Basics to Applications (Optical Science and Engineering)

by Jong-Sen Lee Eric Pottier

The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth’s environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar. The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry. With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data.

Polarimetric SAR Imaging: Theory and Applications (SAR Remote Sensing)

by Yoshio Yamaguchi

Radar polarimetry has been highly sought after for its use in the precise monitoring of Earth's surface. Polarimetric SAR Imaging explains the basic concepts of polarimetry and its diverse applications including: deforestation, tree classification, landslide detection, tsunamis, volcano eruptions and ash distribution, snow accumulation, rice field monitoring, urban area exploration, ship detection, among other applications. The explanations use actual data sets taken by Advanced Land Observing Satellite (ALOS and ALOS2). With the increasing problems presented by climate change, there is a growing need for detailed earth observation using polarimetric data. As the treatment of vector nature of radar waves is complex, there is a gap between the theory and the application. Polarimetric SAR Imaging: Theory and Applications addresses and fills this gap. Features: Provides cutting-edge polarimetric applications for earth observation with full color images. Includes detailed descriptions of theory, equations, expansions, and flowcharts, and numerous real examples. Explains concepts, data analysis, and applications in simple and clear language aimed at an intuitive comprehension. Provides specific and unique examples of PolSAR images derived from actual space and airborne systems (ALOS/ALOS2, PiSAR-x/L) Covers the wide range of the radar polarimetry, especially the decomposition of the polarimetry data, an original method developed by the author using the Japanese polarimetric SAR data Illustrated in full color using images generated by polarimetric techniques, this book is easy to understand and use for both student and expert, and is an excellent resource both in the classroom and in the field.

Polarimetric Scattering and SAR Information Retrieval (Wiley - IEEE)

by Ya-Qiu Jin Feng Xu

Taking an innovative look at Synthetic Aperture Radar (SAR), this practical reference fully covers new developments in SAR and its various methodologies and enables readers to interpret SAR imagery An essential reference on polarimetric Synthetic Aperture Radar (SAR), this book uses scattering theory and radiative transfer theory as a basis for its treatment of topics. It is organized to include theoretical scattering models and SAR data analysis techniques, and presents cutting-edge research on theoretical modelling of terrain surface. The book includes quantitative approaches for remote sensing, such as the analysis of the Mueller matrix solution of random media, mono-static and bistatic SAR image simulation. It also covers new parameters for unsupervised surface classification, DEM inversion, change detection from multi-temporal SAR images, reconstruction of building objects from multi-aspect SAR images, and polarimetric pulse echoes from multi-layering scatter media. Structured to encourage methodical learning, earlier chapters cover core material, whilst later sections involve more advanced new topics which are important for researchers. The final chapter completes the book as a reference by covering SAR interferometry, a core topic in the remote sensing community. Features theoretical scattering models and SAR data analysis techniques Explains the simulation of SAR images for mono- and bi-static radars, covering both qualitative and quantitative information retrieval Chapter topics include: theoretical scattering models; SAR data analysis and processing techniques; and theoretical quantitative simulation reconstruction and inversion techniques Structured to enable both academic learning and independent study, laying down the foundations first of all before advancing to more complex topics Experienced author team presents mathematical derivations and figures so that they are easy for readers to understand Pitched at graduate-level students in electrical engineering, physics, earth and space sciences, as well as researchers MATLAB code available for readers to run their own routines An invaluable reference for research scientists, engineers and scientists working on polarimetric SAR hardware and software, Application developers of SAR and polarimetric SAR, remote sensing specialists working with SAR data – using ESA.

Polarimetric Synthetic Aperture Radar: Principles and Application (Remote Sensing and Digital Image Processing #25)

by Irena Hajnsek Yves-Louis Desnos

This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans.

Polarimetry of Stars and Planetary Systems

by Ludmilla Kolokolova

Summarising the striking advances of the last two decades, this reliable introduction to modern astronomical polarimetry provides a comprehensive review of state-of-the-art techniques, models and research methods. Focusing on optical and near-infrared wavelengths, each detailed, up-to-date chapter addresses a different facet of recent innovations, including new instrumentation, techniques and theories; new methods based on laboratory studies, enabling the modelling of polarimetric characteristics for a wide variety of astronomical objects; emerging fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets, and the search for extraterrestrial life; and unique results produced by space telescopes, and polarimeters aboard exploratory spacecraft. With contributions from an international team of accomplished researchers, this is an ideal resource for astronomers and researchers working in astrophysics, earth sciences, and remote sensing keen to learn more about this valuable diagnostic tool. The book is dedicated to the memory of renowned polarimetrist Tom Gehrels.

Polaris

by Mindee Arnett

Jeth Seagrave and his crew of mercenaries are pulled into one last high-stakes mission in this breathtaking sequel to Mindee Arnett's Avalon, which SLJ called, in a starred review, "an exciting piece of science fiction that keeps up its energy from beginning to end."Jeth Seagrave and his crew are on the run. The ITA, still holding Jeth's mother in a remote research lab, is now intent on acquiring the metatech secrets Jeth's sister Cora carries inside her DNA, and Jeth is desperate to find the resources he needs to rescue his mother and start a new life outside the Confederation. But the ITA is just as desperate, and Jeth soon finds himself pursued by a mysterious figure hell-bent on capturing him and his crew--dead or alive.With nowhere to run and only one play left, Jeth enters into a bargain with the last person he ever thought he'd see again: Daxton Price, the galaxy's newest and most fearsome crime lord. Dax promises to help Jeth, but his help will only come at a price--a price that could mean sacrificing everything Jeth has fought for until now.

Polarised Light in Science and Nature

by J. David Pye

This book describes a number of simple methods for showing that light is polarised and determining the direction of vibration. It is based on a demonstration lecture, called 'Polar Explorations in Light' developed for young audiences, at the Royal Institution of Great Britain.

Polariton Physics: From Dynamic Bose–Einstein Condensates in Strongly‐Coupled Light–Matter Systems to Polariton Lasers (Springer Series in Optical Sciences #229)

by Arash Rahimi-Iman

This book offers an overview of polariton Bose–Einstein condensation and the emerging field of polaritonics, providing insights into the necessary theoretical basics, technological aspects and experimental studies in this fascinating field of science. Following a summary of theoretical considerations, it guides readers through the rich physics of polariton systems, shedding light on the concept of the polariton laser, polariton microcavities, and the technical realization of optoelectronic devices with polaritonic emissions, before discussing the role of external fields used for the manipulation and control of exciton–polaritons. A glossary provides simplified summaries of the most frequently discussed topics, allowing readers to quickly familiarize themselves with the content.The book pursues an uncomplicated and intuitive approach to the topics covered, while also providing a brief outlook on current and future work. Its straightforward content will make it accessible to a broad readership, ranging from research fellows, lecturers and students to interested science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences and quantum physics.

Polarization Correlometry of Scattering Biological Tissues and Fluids (SpringerBriefs in Physics)

by V. T. Bachinskyi O. Ya. Wanchulyak A. G. Ushenko Yu. A. Ushenko A. V. Dubolazov Igor Meglinski

This book presents a new diagnostic approach that utilizes complex statistical, correlation, fractal, and singular analysis of spatial distribution of the Stokes vector of scattered polarized light in different diffraction zones. The technique is able to identify changes in the distribution of optical axes and the birefringent indices of multi-layered fibrillar networks of biological tissues. The book also presents various scenarios for the formation of polarization singularities in laser speckle images of phase-inhomogeneous, multi-layered biological tissues in terms of the characteristic values of Mueller-matrix images. Moreover, in the context of potential diagnostic applications, it discusses the states of polarization singularities and their changes associated with the pathological abnormalities of the extracellular matrix of human tissues, its spatial peculiarities and structural orientation.

Polarization Dynamics of Mode-Locked Fiber Lasers: Science, Technology, and Applications

by Sergey V. Sergeyev Chengbo Mou

This book provides a comprehensive review of the latest research on the science, technology, and applications of mode-locked fiber lasers generating pulse trains with the evolving state of polarization at time scales ranging from a few pulse widths to 10,000 laser cavity round-trip times. It supports readers with a timely source of information on the current novel scientific concepts, and cost-effective schematics, in addition to an overview of the feasible applications. The book aims to demonstrate for the nonlinear science community a newly emerging field of nonlinear science, and so stimulates the development of new theoretical approaches and opens new horizons for the photonics community by pushing boundaries of the existing laser systems towards new applications. The new classes of optical sources and photonic devices explored in this book will be relevant with applications to other fields, including medicine, bio-photonics, metrology, and environmental safety. Key Features • Provides a cutting edge review of the latest emerging science, technology and applications in the field. • Tackles a topic with fast growing interest in USA, Europe and China. • Explores the simple and cheap design and tests of lasers, and outlines the feasible applications.

Polarization Remote Sensing Physics (Springer Remote Sensing/Photogrammetry)

by Wei Chen Bin Yang Lei Yan Feizhou Zhang Yun Xiang

This book elaborates on the physical principles of polarization remote sensing. It explains the reflective characteristics of surface objects and atmosphere separately, including theory, experiment, instrument and application. In addition, it introduces how polarization remote sensing works in advanced research programs as it can be used in aviation, astronomy, disaster risk prevention and navigation fields. This book serves as a fundamental and comprehensive reference for researchers and students.

Polarization Theory of Nuclear Reactions

by Qing-Biao Shen

This book provides the reader with a modern and comprehensive overview of nuclear polarization theory. The understanding of polarization phenomena greatly enriches data obtained from scattering and nuclear reactions by providing information on the interaction that can change spin orientation as well as important verification data for the study of nuclear structures and reaction mechanisms. The author methodically derives the polarization theory of nuclear reactions for various types of elastic scattering and two-body direct reactions between particles of different spin and unpolarized target nuclei with arbitrary spin, as well as the reactions between two polarized light particles and the polarization theory for photon beams. In addition, the polarization theories of relativistic nuclear reactions are rigorously covered in great scope and detail. A chapter on polarized particle transport theory presents the Monte-Carlo method for describing the transport of polarized particles and formalizes the polarized particle transport equation. Here, the author also illustrates a novel and concrete scheme for establishing a polarization nuclear database. Nuclear polarization is important not only for microscopic nuclear structure and reaction studies but also for nuclear engineering, applied nuclear physics, and medical physics. With the development of radioactive beam facilities and, on the theoretical side, the development of consistent microscopic nuclear reaction and structure theories, this book on the polarization theory of nuclear reactions serves as a timely source of reference for students and researchers alike.

Polarized Light

by Dennis H. Goldstein

Polarized light is a pervasive influence in our world—and scientists and engineers in a variety of fields require the tools to understand, measure, and apply it to their advantage. Offering an in-depth examination of the subject and a description of its applications, Polarized Light, Third Edition serves as a comprehensive self-study tool complete with an extensive mathematical analysis of the Mueller matrix and coverage of Maxwell’s equations. Links Historical Developments to Current Applications and Future Innovations This book starts with a general description of light and continues with a complete exploration of polarized light, including how it is produced and its practical applications. The author incorporates basic topics, such as polarization by refraction and reflection, polarization elements, anisotropic materials, polarization formalisms (Mueller–Stokes and Jones) and associated mathematics, and polarimetry, or the science of polarization measurement. New to the Third Edition: A new introductory chapter Chapters on: polarized light in nature, and form birefringence A review of the history of polarized light, and a chapter on the interference laws of Fresnel and Arago—both completely re-written A new appendix on conventions used in polarized light New graphics, and black-and-white photos and color plates Divided into four parts, this book covers the fundamental concepts and theoretical framework of polarized light. Next, it thoroughly explores the science of polarimetry, followed by discussion of polarized light applications. The author concludes by discussing how our polarized light framework is applied to physics concepts, such as accelerating charges and quantum systems. Building on the solid foundation of the first two editions, this book reorganizes and updates existing material on fundamentals, theory, polarimetry, and applications. It adds new chapters, graphics, and color photos, as well as a new appendix on conventions used in polarized light. As a result, the author has re-established this book’s lofty status in the pantheon of literature on this important field.

Polarized Light and Optical Systems (Optical Sciences and Applications of Light)

by Russell A. Chipman Wai Sze Lam Garam Young

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.

Polarized Light and the Mueller Matrix Approach (Series in Optics and Optoelectronics)

by Jose Jorge Perez Razvigor Ossikovski

An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena Polarized Light and the Mueller Matrix Approach thoroughly and cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology. The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and Mueller–Jones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices. The authors proceed to interpret arbitrary decomposition and other interesting parallel decompositions as well as compare the powerful serial decompositions of depolarizing Mueller matrix M. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. The book concludes with useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media. Suitable for novices and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.

Polarized Light and the Mueller Matrix Approach (Series in Optics and Optoelectronics)

by Razvigor Ossikovski José J. Gil

An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena Now thoroughly revised, Polarized Light and the Mueller Matrix Approach cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology. The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and Mueller-Jones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices. The authors proceed with introducing the arbitrary decomposition and other useful parallel decompositions, and compare the powerful serial decompositions of depolarizing Mueller matrices. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. Useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media are also comprehensively described. The book concludes with a new chapter devoted to the main procedures for filtering measured Mueller matrices. Suitable for advanced graduates and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.

Polarized Light in Biomedical Imaging and Sensing: Clinical and Preclinical Applications

by Tatiana Novikova Jessica C. Ramella-Roman

This book focuses on biomedical applications of polarized light, covering instrumentation and modeling specific to the field. This will be the first book, written by leading researchers in the field, to tackle this important topic. Readers will learn the fundamentals of polarized light transport and how to develop instrumentation for clinical and preclinical studies. They will also become familiar with the latest advancement in data analysis and image processing for a variety of medical applications. The book is dedicated specifically to the biomedical community, including scientists, engineers, and physicians working on the development of instrumentation for clinical and preclinical use.Emphasizes biomedical imaging and sensing;Describes new computational approaches with examples;Provides detailed descriptions of novel instrumentation.

Polaron Theory: Model Problems

by N. N. Bogolubov Jr.

Beginning with an introduction to the T-product approach in the theory of a particle interacting with bosonic fields as applied, for example, to the linearized polaron model, the book goes on to deal with the equilibrium state objective being to derive Bogolubov's inequality for the reduced free energy of the polaron. The third chapter deals with s

Polarons and Bipolarons: An Introduction (Chapman & Hall Pure and Applied Mathematics)

by Ashok Chatterjee Soma Mukhopadhyay

This book provides a comprehensive review of the subject of polaron and a thorough account of the sophisticated theories of the polaron. It explains the concept of the polaron physics in as simple a manner as possible and presents the theoretical techniques and mathematical derivations in great detail. Anybody who follows this book will develop a solid command over the subject both conceptually and technically and will be in a position to contribute to this field.

Poled Polymers and Their Applications to SHG and EO Devices

by Seizo Miyata Hiroyuki Sasabe

Poled polymers doped with nonlinear optically active chromophores combine the large second order nonlinearity of the dopant dye molecules with the optical quality of the polymer. The material design flexibility afforded to doped polymers makes them attractive in a large variety of devices and applications. This book addresses the critical science and technology issues in the development and application of poled polymers, with an emphasis on the stabilization of poled polymers and their special applications to second harmonic generation (SHG) and electro-optic (EO) devices.

Policies & Procedures for Data Security: A Complete Manual for Computer Systems and Networks

by Thomas Peltier

Here‘s your how-to manual for developing policies and procedures that maintain the security of information systems and networks in the workplace. It provides numerous checklists and examples of existing programs that you can use as guidelines for creating your own documents.You‘ll learn how to identify your company‘s overall

Policies and Programs for Sustainable Energy Innovations

by Jisun Kim Tugrul U. Daim Ibrahim Iskin Rimal Abu Taha Kevin C. van Blommestein

This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems. For example, shifting away from the conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run. Including discussions of such of timely topics and issues as global warming, bio-fuels and nuclear energy, the editors and contributors to this book provide a wealth of insights and recommendations for sustainable energy innovations.

Policing Patients: Treatment and Surveillance on the Frontlines of the Opioid Crisis

by Elizabeth Chiarello

A book that takes you inside the culture of surveillance that pits healthcare providers against their patientsDoctors and pharmacists make critical decisions every day about whether to dispense opioids that alleviate pain but fuel addiction. Faced with a drug crisis that has already claimed more than a million lives, legislatures, courts, and policymakers have enlisted the help of technology in the hopes of curtailing prescriptions and preventing deaths. This book reveals how this &“Trojan horse&” technology embeds the logics of surveillance in the practice of medicine, forcing care providers to police their patients while undermining public trust and doing untold damage to those at risk.Elizabeth Chiarello draws on hundreds of in-depth interviews with physicians, pharmacists, and enforcement agents across the United States to take readers to the frontlines of the opioid crisis, where medical providers must make difficult choices between treating and punishing the people in their care. States now employ prescription drug monitoring programs capable of tracking all controlled substances within a state and across state lines. Chiarello describes how the reliance on these databases blurs the line between medicine and criminal justice and pits pain sufferers against people with substance-use disorders in a zero-sum game.Shedding critical light on this brave new world of healthcare, Policing Patients urges medical providers to reaffirm their roles as healers and proposes invaluable policy solutions centered on treatment, prevention, and harm reduction.

Policing Wars

by Caroline Holmqvist

Holmqvist presents an original account of the relationship between war and policing in the twenty first century. This interdisciplinary study of contemporary Western strategic thinking reveals how, why, and with what consequences, the wars in Afghanistan and Iraq became seen as policing wars.

Refine Search

Showing 49,651 through 49,675 of 74,074 results