Browse Results

Showing 50,026 through 50,050 of 75,586 results

Physics of Organic Semiconductors

by Wolfgang Brütting Chihaya Adachi

The field of organic electronics has seen a steady growth over the last 15 years. At the same time, our scientific understanding of how to achieve optimum device performance has grown, and this book gives an overview of our present-day knowledge of the physics behind organic semiconductor devices. Based on the very successful first edition, the editors have invited top scientists from the US, Japan, and Europe to include the developments from recent years, covering such fundamental issues as: - growth and characterization of thin films of organic semiconductors, - charge transport and photophysical properties of the materials as well as their electronic structure at interfaces, and - analysis and modeling of devices like organic light-emitting diodes or organic lasers. The result is an overview of the field for both readers with basic knowledge and for an application-oriented audience. It thus bridges the gap between textbook knowledge largely based on crystalline molecular solids and those books focusing more on device applications.

Physics of PET and SPECT Imaging (Imaging in Medical Diagnosis and Therapy)

by Magnus Dahlbom

PET and SPECT imaging has improved to such a level that they are opening up exciting new horizons in medical diagnosis and treatment. This book provides a complete introduction to fundamentals and the latest progress in the field, including an overview of new scintillator materials and innovations in photodetector development, as well as the latest system designs and image reconstruction algorithms. It begins with basics of PET and SPECT physics, followed by technology advances and computing methods, quantitative techniques, multimodality imaging, instrumentation, pre-clinical and clinical imaging applications.

Physics of Petroleum Reservoirs

by Xuetao Hu Shuyong Hu Fayang Jin Su Huang

This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.

Physics of Petroleum Reservoirs

by Xuetao Hu Shuyong Hu Fayang Jin Su Huang

This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.

Physics of Petroleum Reservoirs (Springer Mineralogy)

by Xuetao Hu, Shuyong Hu, Fayang Jin and Su Huang

This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.

Physics of Photorefraction in Polymers (Advances in Nonlinear Optics)

by Dave West D.J. Binks

Photorefractive polymer composites are an unusually sensitive class of photopolymers. Physics of Photorefraction in Polymers describes our current understanding of the physical processes that produce a photorefractive effect in key composite materials. Topics as diverse as charge generation, dispersive charge transport, charge compensation and trapping, molecular diffusion, organic composite structure, and nonlinear optical wave coupling are all developed from a physical perspective. Emphasis is placed on explaining how these physical processes lead to observable properties of the polymers, and the authors discuss various applications, including holographic archiving.

Physics of Polymer Gels

by Takamasa Sakai

Explains the correlation between the physical properties and structure of polymer gels This book elucidates in detail the physics of polymer gels and reviews their unique properties that make them attractive for innumerable applications. Geared towards experienced researchers and entrants to the field, it covers rubber elasticity, swelling and shrinking, deformation and fracture of as well as mass transport in polymer gels, enabling the readers to purposefully design polymer gels fit for specific purposes. Divided into two parts, Physics of Polymer Gels starts by explaining the statistical mechanics and scaling of a polymer chains, and that of polymer solutions. It then introduces the structure of polymer gels and explains the rubber elasticity, which predicts the solid-like nature of polymer gels. Next, it describes swelling/deswelling, which can be understood by combining the rubber elasticity and the osmotic pressure of a polymer solution. Large deformation and fracture, and the diffusion of substances in polymer gels, which are essential for practical applications, are also introduced. The last half of the book contains the authors' experimental results using Tetra-PEG gels and provides readers with the opportunity to examine and compare it with the first half in order to understand how to utilize the models to experiments. This title: Is the first book dedicated to the physics of polymer gels Describes in detail the properties of polymer gels and their underlying physics, facilitating the development of novel, polymer gel-based applications Serves as a reference for all relevant polymer gel properties and their underlying physics Provides a unified treatment of the subject, explaining the physical properties of polymer gels within a common nomenclature framework Physics of Polymer Gels is a must-have book for experienced researchers, such as polymer chemists, materials scientists, organic chemists, physical chemists, and solid-state physicists, as well as for newcomers to the field.

Physics of Quantum Fluids: New Trends and Hot Topics in Atomic and Polariton Condensates

by Alberto Bramati Michele Modugno

The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

Physics of Quantum Rings

by Vladimir Fomin

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

Physics of Quantum Rings (NanoScience and Technology)

by Vladimir M. Fomin

This book, now in its second edition, introduces readers to quantum rings as a special class of modern high-tech material structures at the nanoscale. It deals, in particular, with their formation by means of molecular beam epitaxy and droplet epitaxy of semiconductors, and their topology-driven electronic, optical and magnetic properties. A highly complex theoretical model is developed to adequately represent the specific features of quantum rings. The results presented here are intended to facilitate the development of low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings. This second edition includes both new and significantly revised chapters. It provides extensive information on recent advances in the physics of quantum rings related to the spin-orbit interaction and spin dynamics (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum interference manifestations in novel materials (graphene nanoribbons, MoS2), and the effects of electrical field and THz radiation on the optical properties of quantum rings. The new edition also shares insights into the properties of various novel architectures, including coupled quantum ring-quantum dot chains and concentric quantum rings, topologic states of light in self-assembled ring-like cavities, and optical and plasmon m.odes in Möbius-shaped resonators.

Physics of Quantum Rings (NanoScience and Technology)

by Vladimir M. Fomin

The book represents quantum rings as special class of modern high-tech materials structures at the nanoscale. It deals, in particular, with their formation by molecular beam epitaxy and droplet epitaxy of semiconductors, their topology-driven electronic, optical and magnetic properties. Highly complex theoretical models are developed to adequately explain the specific features of quantum rings. The results presented in the book serve to develop low-cost high-performance electronic, spintronic, magnetic, optoelectronic and information processing devices based on various doubly-connected structures. The third edition contains new chapters and significantly updated and extended chapters from the second edition. It provides an ample presentation of the recent advancements in the physics of quantum rings related to spin dynamics and the spin-orbit interaction (spin interference in Rashba rings, tunable exciton topology on type II InAs/GaAsSb quantum nanostructures), the electron-phonon interaction in ring-like structures, quantum-interference manifestations in novel materials (e.g., graphene cylinders, cyclocarbons, MoS2), effects of electric field and THz radiation on optical properties of quantum rings and quantum-ring molecules. Special emphasis is made on fascinating novel effects emerging due to double-connectedness in various physical systems, ranging from the occurrence of the continuous geometric phase provoking formation of non-integer mode numbers in Möbius microring light cavities—through the inverse Faraday effect on the generation of current states in an array of superconductor nanorings—to the emergence of lightning-like magnetic flux bursts into a macroscopic superconductor ring. The new edition gives insight into the properties of various novel architectures, including coupled semiconductor quantum ring-quantum dot chains and concentric quantum rings, In(AsSbP) graded-composition quantum rings, topologic states of light in self-assembled and direct-printed ring-like cavities, optical and plasmon modes in Möbius-band-shaped resonators, the ferromagnetic resonance in various magnetic elements ranging from arrays of magnetic nanorings to individual 3D nanovolcanoes. It includes novel theoretical solutions to long-standing problems in the physics of quantum rings: interpretation of the observed magnetoresistance oscillations by a transmission model for superconductor quantum rings and adaptation of the Bardeen-Cooper-Schrieffer theory of superconductivity for metallic quantum rings with due account for the effects of double-connectedness on the electron properties.

Physics of Radiation and Climate

by Michael A. Box Gail P. Box

Our current climate is strongly influenced by atmospheric composition, and changes in this composition are leading to climate change. Physics of Radiation and Climate takes a look at how the outward flow of longwave or terrestrial radiation is affected by the complexities of the atmosphere's molecular spectroscopy. This book examines the planet in

Physics of Radio-Frequency Plasmas

by Pascal Chabert Nicholas Braithwaite

Low-temperature radio frequency plasmas are essential in various sectors of advanced technology, from micro-engineering to spacecraft propulsion systems and efficient sources of light. The subject lies at the complex interfaces between physics, chemistry and engineering. Focusing mostly on physics, this book will interest graduate students and researchers in applied physics and electrical engineering. The book incorporates a cutting-edge perspective on RF plasmas. It also covers basic plasma physics including transport in bounded plasmas and electrical diagnostics. Its pedagogic style engages readers, helping them to develop physical arguments and mathematical analyses. Worked examples apply the theories covered to realistic scenarios, and over 100 in-text questions let readers put their newly acquired knowledge to use and gain confidence in applying physics to real laboratory situations.

Physics of Semiconductor Devices

by Simon M. Sze Kwok K. Ng Yiming Li

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

Physics of Semiconductor Devices

by Massimo Rudan

This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor-device parameters.

Physics of Semiconductor Devices

by Massimo Rudan

This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor-device parameters.

Physics of Semiconductors 2002: Proceedings of the 26th International Conference, Edinburgh, 29 July to 2 August 2002 (Institute of Physics Conference Series)

by A R Long J H Davies

The 26th International Conference on the Physics of Semiconductors was held from 29 July to 2 August 2002 at the Edinburgh International Conference Centre. It is the premier meeting in the field of semiconductor physics and attracted over 1000 participants from leading academic, governmental and industrial institutions in some 50 countries around the world. Plenary and invited papers (34) have been printed in the paper volume, and all submitted papers (742) are included on the downloadable resources.These proceedings provide an international perspective on the latest research and a review of recent developments in semiconductor physics. Topics range from growth and properties of bulk semiconductors to the optical and transport properties of semiconductor nanostructures. There are 742 papers, mostly arranged in chapters on Bulk, dynamics, defects and impurities, growth (147); Heterostructures, quantum wells, superlattices - optical (138); Heterostructures, quantum wells, superlattices - transport (97); Quantum nanostructures - optical (120); Quantum nanostructures - transport (85); New materials and concepts (52); Novel devices (43); and Spin and magnetic effects (48). A number of trends were identified in setting up the overall programme of the conference. There were significant contributions from new directions of research such as nanostructures and one-dimensional physics; spin effects and ferromagnetism; and terahertz and subband physics. These complemented areas in which the conference has traditional strengths, such as defects and bulk materials; crystal growth; quantum transport; and optical properties.As a record of a conference that covers the whole range of semiconductor physics, this book is an essential reference for researchers working on semiconductor physics, device physics, materials science, chemistry, and electronic and electrical engineering.

Physics of Semiconductors and Nanostructures

by Jyoti Prasad Banerjee Suranjana Banerjee

This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.

Physics of Societal Issues

by David Hafemeister

This book provides the reader with essential tools needed to analyze complex societal issues and demonstrates the transition from physics to modern-day laws and treaties. This second edition features new equation-oriented material and extensive data sets drawing upon current information from experts in their fields. Problems to challenge the reader and extend discussion are presented on three timely issues: * National Security: Weapons, Offense, Defense, Verification, Nuclear Proliferation, Terrorism * Environment: Air/Water, Nuclear, Climate Change, EM Fields/Epidemiology * Energy: Current Energy Situation, Buildings, Solar Buildings, Renewable Energy, Enhanced End-Use Efficiency, Transportation, Economics Praise for the first edition: "This insight is needed in Congress and the Executive Branch. Hafemeister, a former Congressional fellow with wide Washington experience, has written a book for physicists, chemists and engineers who want to learn science and policy on weapons, energy, and the environment. Scientists who want to make a difference will want this book. " Richard Scribner, first Director, Congressional Science and Engineering Fellow Program, AAAS "Hafemeister shows how much one can understand about nuclear weapons and missile issues through simple back-of-the-envelope calculations. He also provides compact explanations of the partially successful attempts that have been made over the past 60 years to control these weapons of mass destruction. Hopefully, Physics of Societal Issues will help interest a new generation of physicists in continuing this work. " Frank von Hippel, Professor, Princeton, former Assistant Director, National Security, White House, OSTP "Energy policy must be quantitative. People who don't calculate economic tradeoffs often champion simplistic hardware. 'The solution is more. . . nuclear power, or electric cars, or photovoltaics, etc. ' Some simple physics will show that the true solution matches supply and demand as an 'integrated resource plan. ' Physics of Societal Issues is a good place to begin this journey. " Arthur Rosenfeld, former California Energy Commissioner, Professor-emeritus, U. of California-Berkeley

Physics of Solar Energy and Energy Storage

by C. Julian Chen

PHYSICS OF SOLAR ENERGY AND ENERGY STORAGE Join the fight for a renewable world with this indispensable introduction Solar energy is one of the most essential tools in the fight to create a sustainable future. A wholly renewable and cost-effective energy source capable of providing domestic, business, and industrial energy, solar energy is expected to become a $223 billion a year industry by 2026. The future of global energy production demands researchers and engineers who understand the physics of harnessing, storing, and distributing solar energy. Physics of Solar Energy and Energy Storage begins to meet this demand, with a thorough, accessible overview of the required fundamentals. Now fully updated to reflect the past decade of research amidst a growing understanding of the scale of our collective challenge, it promises to train the next generation of researchers and engineers who will join this vital effort. Readers of the second edition of Physics of Solar Energy and Energy Storage will find: A particular focus on lithium-ion rechargeable batteries Detailed discussions of photovoltaic solar systems, concentrating solar systems, passive solar heating, and more Homework problems and exercises throughout to reinforce learning Physics of Solar Energy and Energy Storage is ideal for mechanical, chemical, or electrical engineers working on solar or alternative energy projects, as well as researchers and policymakers in related fields.

Physics of Solid-State Laser Materials (Springer Series in Materials Science #289)

by Zundu Luo Yidong Huang

This book discusses the spectral properties of solid-state laser materials, including emission and absorption of light, the law of radiative and nonradiative transitions, the selection rule for optical transitions, and different calculation methods of the spectral parameters. The book includes a systematic presentation of the authors' own research works in this field, specifically addressing the stimulated nonradiative transition theory and the apparent crystal field model. This volume is helpful resource for researchers and graduate students in the fields of solid spectroscopy and solid-state laser material physics, while also serving as a valuable reference guide for instructors and advanced students of physics.

Physics of Strength and Fracture Control: Adaptation of Engineering Materials and Structures

by Viktor P. Astakhov Anatoly A. Komarovsky

Still passive and for the most part uncontrollable, current systems intended to ensure the reliability and durability of engineering structures are still in their developmental infancy. They cannot make corrections or recondition materials, and most material and structural failures cannot be predicted. Accidents-and catastrophes-result.Phys

Physics of Turbulent Jet Ignition: Mechanisms And Dynamics Of Ultra-lean Combustion (Springer Theses)

by Sayan Biswas

This book focuses on developing strategies for ultra-lean combustion of natural gas and hydrogen, and contributes to the research on extending the lean flammability limit of hydrogen and air using a hot supersonic jet. The author addresses experimental methods, data analysis techniques, and results throughout each chapter and:Explains the fundamental mechanisms behind turbulent hot jet ignition using non-dimensional analysisExplores ignition characteristics by impinging hot jet and multiple jets in relation to better controllability and lean combustionExplores how different instability modes interact with the acoustic modes of the combustion chamber.This book provides a potential answer to some of the issues that arise from lean engine operation, such as poor ignition, engine misfire, cycle-to-cycle variability, combustion instability, reduction in efficiency, and an increase in unburned hydrocarbon emissions. This thesis was submitted to and approved by Purdue University.

Physics of Wurtzite Nitrides and Oxides

by Bernard Gil

This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.

Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100

by Michio Kaku

NATIONAL BESTSELLER • The renowned theoretical physicist and national bestselling author of The God Equation details the developments in computer technology, artificial intelligence, medicine, space travel, and more, that are poised to happen over the next century. &“Mind-bending…. [An] alternately fascinating and frightening book.&” —San Francisco ChronicleSpace elevators. Internet-enabled contact lenses. Cars that fly by floating on magnetic fields. This is the stuff of science fiction—it&’s also daily life in the year 2100.Renowned theoretical physicist Michio Kaku considers how these inventions will affect the world economy, addressing the key questions: Who will have jobs? Which nations will prosper? Kaku interviews three hundred of the world&’s top scientists—working in their labs on astonishing prototypes. He also takes into account the rigorous scientific principles that regulate how quickly, how safely, and how far technologies can advance. In Physics of the Future, Kaku forecasts a century of earthshaking advances in technology that could make even the last centuries&’ leaps and bounds seem insignificant.

Refine Search

Showing 50,026 through 50,050 of 75,586 results