- Table View
- List View
Power System Control Under Cascading Failures: Understanding, Mitigation, and System Restoration (Wiley - IEEE)
by Wei Sun Kai Sun Yunhe Hou Junjian QiOffers a comprehensive introduction to the issues of control of power systems during cascading outages and restoration process Power System Control Under Cascading Failures offers comprehensive coverage of three major topics related to prevention of cascading power outages in a power transmission grid: modelling and analysis, system separation and power system restoration. The book examines modelling and analysis of cascading failures for reliable and efficient simulation and better understanding of important mechanisms, root causes and propagation patterns of failures and power outages. Second, it covers controlled system separation to mitigate cascading failures addressing key questions such as where, when and how to separate. Third, the text explores optimal system restoration from cascading power outages and blackouts by well-designed milestones, optimised procedures and emerging techniques. The authors — noted experts in the field — include state-of-the-art methods that are illustrated in detail as well as practical examples that show how to use them to address realistic problems and improve current practices. This important resource: Contains comprehensive coverage of a focused area of cascading power system outages, addressing modelling and analysis, system separation and power system restoration Offers a description of theoretical models to analyse outages, methods to identify control actions to prevent propagation of outages and restore the system Suggests state-of-the-art methods that are illustrated in detail with hands-on examples that address realistic problems to help improve current practices Includes companion website with samples, codes and examples to support the text Written for postgraduate students, researchers, specialists, planners and operation engineers from industry, Power System Control Under Cascading Failures contains a review of a focused area of cascading power system outages, addresses modelling and analysis, system separation, and power system restoration.
Power System Control and Stability (IEEE Press Series on Power Engineering)
by Vijay Vittal Paul M. Anderson James D. McCalley A. A. FouadThe third edition of the landmark book on power system stability and control, revised and updated with new material The revised third edition of Power System Control and Stability continues to offer a comprehensive text on the fundamental principles and concepts of power system stability and control as well as new material on the latest developments in the field. The third edition offers a revised overview of power system stability and a section that explores the industry convention of q axis leading d axis in modeling of synchronous machines. In addition, the third edition focuses on simulations that utilize digital computers and commercial simulation tools, it offers an introduction to the concepts of the stability analysis of linear systems together with a detailed formulation of the system state matrix. The authors also include a revised chapter that explores both implicit and explicit integration methods for transient stability. Power System Control and Stability offers an in-depth review of essential topics and: Discusses topics of contemporary and future relevance in terms of modeling, analysis and control Maintains the approach, style, and analytical rigor of the two original editions Addresses both power system planning and operational issues in power system control and stability Includes updated information and new chapters on modeling and simulation of round-rotor synchronous machine model, excitation control, renewable energy resources such as wind turbine generators and solar photovoltaics, load modeling, transient voltage instability, modeling and representation of three widely used FACTS devices in the bulk transmission network, and the modeling and representation of appropriate protection functions in transient stability studies Contains a set of challenging problems at the end of each chapter Written for graduate students in electric power and professional power system engineers, Power System Control and Stability offers an invaluable reference to basic principles and incorporates the most recent techniques and methods into projects.
Power System Dynamic Modelling and Analysis in Evolving Networks (CIGRE Green Books)
by Babak Badrzadeh Zia EminThis Green Book is an essential resource for power system engineers seeking comprehensive information on contemporary power system dynamic modelling and analysis. With today's rapid adoption of inverter-based resources and the resulting changes in power system dynamics, this book compares conventional power systems with evolving power systems characterized by high shares of grid-connected and distributed inverter-based resources. It covers dynamic phenomena, analysis methods, simulation tools and enablers required for secure and reliable system planning and operation. Starting with an overview of power system studies and associated analysis tools, the book provides modelling requirements for various power system components, including existing and emerging technologies. It includes practical examples from real-world power systems worldwide that act as step-by-step study guides for practising engineers and provides knowledge to apply in their day-to-day tasks. Additionally, the book emphasizes the importance of power system model acceptance testing and validation, providing practical examples of various testing methods. Written with practising power system engineers in mind, this book minimizes the use of advanced mathematics. However, relevant sources for those interested in learning more about mathematical concepts are provided. Overall, this book is an invaluable resource for power system engineers navigating contemporary power systems. Readers who would like to comment on any of the published books or identify errors to the editorial team please contact: cigregreenbooks@springer.com.
Power System Dynamics
by Jan Machowski Dr Jim Bumby Janusz BialekThis book is the fully revised and updated second edition of Power System Dynamics and Stability published in 1997. The modified title Power System Dynamics: Stability and Control reflects a slight shift in focus from solely describing power system dynamics to the means of dealing with them. The book has been expanded by about a third to include:a new chapter on wind power generation;a new section on wide-area measurement systems (WAMS) and their application for real-time control;an overview of lessons learned from wide-spread blackouts affecting North America and Europe in 2003, 2004 and 2006;enhanced treatment of voltage stability and control, and frequency stability and control;application of Lyapunov direct method to analyse and enhance stability of multi-machine power systems ;expanded coverage of steady-state stability using eigenvalue analysis, including modal analysis of dynamic equivalents.The book continues the successful approach of the first edition by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The reader will appreciate the authors' accessible approach as the book is illustrated by over 400 diagrams and a large number of examples.Power System Dynamics: Stability and Control, Second Edition is an essential resource for graduates of electrical engineering. It is also a clear and comprehensive reference text for undergraduate students, and for practising engineers and researchers who are working in electricity companies or in the development of power system technologies.
Power System Dynamics and Control
by Harry G. Kwatny Karen Miu-MillerWhereas power systems have traditionally been designed with a focus on protecting them from routine component failures and atypical user demand, we now also confront the fact that deliberate attack intended to cause maximum disruption is a real possibility. In response to this changing environment, new concepts and tools have emerged that address many of the issues facing power system operation today. This book is aimed at introducing these ideas to practicing power systems engineers, control systems engineers interested in power systems, and graduate students in these areas. The ideas are examined with an emphasis on how they can be applied to improve our understanding of power system behavior and help design better control systems. The book is supplemented by a Mathematica package enabling readers to work out nontrivial examples and problems. Also included is a set of Mathematica tutorial notebooks providing detailed solutions of the worked examples in the text. In addition to Mathematica, simulations are carried out using Simulink with Stateflow.
Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox
by Joe H. Chow M. A. Pai Peter W. SauerClassic power system dynamics text now with phasor measurement and simulation toolbox This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances have been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement and using the Power System Toolbox for dynamic simulation have been added. These new materials will reinforce power system dynamic aspects treated more analytically in the earlier chapters. Key features: Systematic derivation of synchronous machine dynamic models and simplification. Energy function methods with an emphasis on the potential energy boundary surface and the controlling unstable equilibrium point approaches. Phasor computation and synchrophasor data applications. Book companion website for instructors featuring solutions and PowerPoint files. Website for students featuring MATLABTM files. Power System Dynamics and Stability, 2nd Edition, with Synchrophasor Measurement and Power System Toolbox combines theoretical as well as practical information for use as a text for formal instruction or for reference by working engineers.
Power System Dynamics: Stability and Control
by Jan Machowski Zbigniew Lubosny Janusz W. Bialek James R. BumbyAn authoritative guide to the most up-to-date information on power system dynamics The revised third edition of Power System Dynamics and Stability contains a comprehensive, state-of-the-art review of information on the topic. The third edition continues the successful approach of the first and second editions by progressing from simplicity to complexity. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The book is illustrated by a large number of diagrams and examples. The third edition of Power System Dynamics and Stability explores the influence of wind farms and virtual power plants, power plants inertia and control strategy on power system stability. The authors—noted experts on the topic—cover a range of new and expanded topics including: Wide-area monitoring and control systems. Improvement of power system stability by optimization of control systems parameters. Impact of renewable energy sources on power system dynamics. The role of power system stability in planning of power system operation and transmission network expansion. Real regulators of synchronous generators and field tests. Selectivity of power system protections at power swings in power system. Criteria for switching operations in transmission networks. Influence of automatic control of a tap changing step-up transformer on the power capability area of the generating unit. Mathematical models of power system components such as HVDC links, wind and photovoltaic power plants. Data of sample (benchmark) test systems. Power System Dynamics: Stability and Control, Third Edition is an essential resource for students of electrical engineering and for practicing engineers and researchers who need the most current information available on the topic.
Power System Economic and Market Operations
by Jin ZhongPower system operation is one of the important issues in the power industry. The book aims to provide readers with the methods and algorithms to save the total cost in electricity generation and transmission. It begins with traditional power systems and builds into the fundamentals of power system operation, economic dispatch (ED), optimal power flow (OPF), and unit commitment (UC). The book covers electricity pricing mechanisms, such as nodal pricing and zonal pricing, based on Security-Constrained ED (SCED) or SCUC. The operation of energy market and ancillary service market are also explored. "It covers a wide range of interesting topics, which could be very useful for understanding the main phenomena ruling power systems economy (such as Optimal Power Flow analysis and unit Commitments). It addresses topics widely treated in the literature, hence it is important to outline its distinctive features compared to other similar books. The book is well structured and well balanced."—Alfredo Vaccaro, University of Sannio, Italy
Power System Flexibility: Modeling, Optimization and Mechanism Design (Power Systems)
by Ming Zhou Gengyin Li Zhaoyuan WuThis book provides a detailed description of the flexibility of the power system with high share of variable renewable generation, including power system flexibility modeling, flexibility-based economic dispatch, demand side flexibility response, large-scale distributed flexible resources aggregation and market design for enhancing the flexibility of the power system, etc. The book provides an appropriate blend of theoretical background and practical applications of the power system flexibility, which are developed as working algorithms, coded in MATLAB and GAMS environments. This feature strengthens the usefulness of the book for graduate students and practitioners. Students will gain an insightful understanding of the flexibility of the power system with high share of renewables integration, including: (1) the formulation of flexibility modeling and flexibility-based economic dispatch models, (2) the familiarization with efficient solution algorithms for such models, (3) insights into these problems through the detailed analysis of numerous illustrative examples and (4) market design approach for enhancing the flexibility of the power system. Hopefully, this book greatly benefits readers in the fields of energy economics and engineering.
Power System Fundamentals
by Arturo Molina Pedro Ponce Omar Mata Luis Ibarra Brian MacCleerySmart grids are linked with smart homes and smart meters. These smart grids are the new topology for generating, distributing, and consuming energy. If these smart devices are not connected in a smart grid, then they cannot work properly; hence, the conventional power systems are swiftly changing in order to improve the quality of electrical energy. This book covers the fundamentals of power systems—which are the pillars for smart grids —with a focus on defining the smart grid with theoretical and experimental electrical concepts. <P><P> Power System Fundamentals begins by discussing electric circuits, the basic systems in smart grids, and finishes with a complete smart grid concept. The book allows the reader to build a foundation of understanding with basic and advanced exercises that run on simulation before moving to experimental results. It is intended for readers who want to comprehensively cover both the basic and advanced concepts of smart grids.
Power System Grid Operation Using Synchrophasor Technology (Power Electronics and Power Systems)
by Sarma Ndr NuthalapatiThis book brings together successful stories of deployment of synchrophasor technology in managing the power grid. The authors discuss experiences with large scale deployment of Phasor Measurement Units (PMUs) in power systems across the world, enabling readers to take this technology into control center operations and develop good operational procedures to manage the grid better, with wide area visualization tools using PMU data.
Power System Grounding and Transients: An Introduction
by A.P. Sakis Meliopoulis""This authoritative work presents detailed coverage of modern modeling and analysis techniques used in the design of electric power transmission systems -- emphasizing grounding and transients. It provides the theoretical background necessary for understanding problems related to grounding systems, such as safety and protection.
Power System Load Frequency Control: Classical and Adaptive Fuzzy Approaches
by Hassan A. YousefThis title presents a balanced blend between classical and intelligent load frequency control techniques, which is detrminant for continous supply of power loads. The classical control techniques introduced in this book include PID, pole placement, observer-based state feedback, static and dynamic output feedback controllers while the intelligent control techniques explained here are of adaptive fuzzy control types. This book will analyze and design different decentralized LF controllers in order to maintain the frequency deviations of each power area within the limits and keep the tie-line power flow between different power areas at the scheduled levels.
Power System Loads and Power System Stability (Springer Theses)
by Yue ZhuThis thesis develops a pioneering methodology and a concept for identifying critical loads and load model parameters in large power networks based on their influence on power system stability. The research described in the thesis first develops an automatic load modelling tool (ALMT) that can be used to automatically build load model from actual measured power system data without human intervention and the benefits of the ALMY are explored. Secondly, it develops a pioneering framework based on Morris screening method for ranking power system load model parameters based on their influence on overall power system stability (voltage, frequency, transient and small disturbance stability) considering different load models and loading conditions. Thirdly, a novel probabilistic methodology for determining the accuracy levels of critical load model parameters has been developed. This book will be of interest to students and researchers within the field of electrical engineering, as well as industry professionals.
Power System Management: Advances and Applications
by Nagendra Singh Yogesh Pahariya Vadim Bolshev Harsh Pratap SinghPower System Management demonstrates the effectiveness of emerging technologies in electrical systems compared to traditional operational systems. It showcases different operations of the electrical systems, presents the output results based on the latest techniques, and compares the results with classical methods. Highlights how to implement the modern automation system in the electrical transmission, and distribution systems Discusses the integration of distributed energy resources at both medium voltage (MV) and low voltage (LV) levels with modern automation systems Showcases the problems associated with the AC transmission system and the required automation control system Covers application of smart technologies including deep learning and artificial intelligence in fault detection, and grid optimization Presents real-time monitoring and control of power system devices using the Internet of Things systems, and artificial intelligence-operated robotics system used for control of electrical distribution system The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields including electrical engineering, electronics and communications engineering, computer science, and engineering.
Power System Modeling, Computation, and Control (Wiley - IEEE)
by Joe H. Chow Juan J. Sanchez-GascaProvides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis. Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling. Simplifies the learning of complex power system concepts, models, and dynamics Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems Written by experienced educators whose previous books and papers are used extensively by the international scientific community Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.
Power System Monitoring and Control (Wiley - IEEE)
by Hassan Bevrani Masayuki Watanabe Yasunori MitaniPower System Monitoring and Control (PSMC) is becoming increasingly significant in the design, planning, and operation of modern electric power systems. In response to the existing challenge of integrating advanced metering, computation, communication, and control into appropriate levels of PSMC, Power System Monitoring and Control presents a comprehensive overview of the basic principles and key technologies for the monitoring, protection, and control of contemporary wide-area power systems. A variety of topical issues are addressed, including renewable energy sources, smart grids, wide-area stabilizing, coordinated voltage regulation, and angle oscillation damping—as well as the advantages of phasor measurement units (PMUs) and global positioning systems (GPS) time signal. End-of-chapter problems and solutions, along with case studies, add depth and clarity to all topics. Timely and important, Power System Monitoring and Control is an invaluable resource for addressing the myriad of critical technical engineering considerations in modern electric power system design and operation. • Provides an updated and comprehensive reference for researcher and engineers working on wide-area power system monitoring and control (PSMC) • Links fundamental concepts of PSMC, advanced metering and control theory/techniques, and practical engineering considerations • Covers PSMC problem understanding, design, practical aspects, and timely topics such as smart/microgrid control and coordinated voltage regulation and angle oscillation damping • Incorporates authors’ experiences teaching and researching in various international locales including Japan, Thailand, Singapore, Malaysia, Iran, and Australia
Power System Operation with Large Scale Stochastic Wind Power Integration
by Tao DingThis book addresses the uncertainties of wind power modeled as interval numbers and assesses the physical modeling and methods for interval power flow, interval economic dispatch and interval robust economic dispatch. In particular, the optimization models are set up to address these topics and the state-of-the-art methods are employed to efficiently solve the proposed models. Several standard IEEE test systems as well as real-world large-scale Polish power systems have been tested to verify the effectiveness of the proposed models and methods. These methods can be further applied to other research fields that are involved with uncertainty.
Power System Operation, Utilization, and Control
by John Fuller Samir I. Abood Pamela ObiomonThis book presents power system analysis methods that cover all aspects of power systems operation, utilization, control, and system management.At the beginning of each chapter, an introduction is given describing the objectives of the chapter. The authors have attempted to present power system parameters in a lucid, logical, step-by-step approach in a lucid, logical, step-by-step approach.In recognition of requirements by the Accreditation Board for Engineering and Technology (ABET) on integration of engineering computer tools, the authors demonstrate the use of MATLAB® programming in obtaining solutions to engineering power problems. MATLAB is introduced in a student-friendly manner and follow up is given in Appendix A. The use of MATLAB and power system applications arepresented throughout the book.Practice problems immediately follow each illustrative example. Students can follow the example step-by-step to solve the practice problems. These practice problems test students’ comprehension and reinforce key concepts before moving on to the next chapter.In each chapter, the authors discuss some application aspects of the chapter's concepts using computer programming. The material covered in the chapter applied to at least one or two practical problems to help students see how the concepts are used in real-life situations.Thoroughly worked examples are provided at the end of every section. These examples give students a solid grasp of the solutions and the confidence to solve similar problems themselves.Designed for a three-hour semester course on Power System Operation, Utilization, and Control, this book is intended as a textbook for a senior-level undergraduate student in electrical and computer engineering. The prerequisites for a course based on this book are knowledge of standard mathematics, including calculus and complex numbers and basic undergraduate engineering courses.
Power System Operations
by Antonio J. Conejo Luis BaringoThis textbook provides a detailed description of operation problems in power systems, including power system modeling, power system steady-state operations, power system state estimation, and electricity markets. The book provides an appropriate blend of theoretical background and practical applications, which are developed as working algorithms, coded in Octave (or Matlab) and GAMS environments. This feature strengthens the usefulness of the book for both students and practitioners. Students will gain an insightful understanding of current power system operation problems in engineering, including: (i) the formulation of decision-making models, (ii) the familiarization with efficient solution algorithms for such models, and (iii) insights into these problems through the detailed analysis of numerous illustrative examples. The authors use a modern, "building-block" approach to solving complex problems, making the topic accessible to students with limited background in power systems. Solved examples are used to introduce new concepts and each chapter ends with a set of exercises.
Power System Operations and Electricity Markets (Electric Power Engineering Series)
by Fred I. Denny David E. Dismukes<p>The electric power industry in the U.S. has undergone dramatic changes in recent years. Tight regulations enacted in the 1970's and then de-regulation in the 90's have transformed it from a technology-driven industry into one driven by public policy requirements and the open-access market. Now, just as the utility companies must change to ensure their survival, engineers and other professionals in the industry must acquire new skills, adopt new attitudes, and accommodate other disciplines. <p>Power System Operations and Electricity Markets provides the information engineers need to understand and meet the challenges of the new competitive environment. Integrating the business and technical aspects of the restructured power industry, it explains, clearly and succinctly, how new methods for power systems operations and energy marketing relate to public policy, regulation, economics, and engineering science. <p>The authors examine the technologies and techniques currently in use and lay the groundwork for the coming era of unbundling, open access, power marketing, self-generation, and regional transmission operations.The rapid, massive changes in the electric power industry and in the economy have rendered most books on the subject obsolete. <p>Based on the authors' years of front-line experience in the industry and in regulatory organizations, Power System Operations and Electricity Markets is current, insightful, and complete with Web links that will help readers stay up to date.</p>
Power System Optimization: Large-scale Complex Systems Approaches
by Haoyong Chen Honwing Ngan Yongjun ZhangAn original look from a microeconomic perspective for power system optimization and its application to electricity markets Presents a new and systematic viewpoint for power system optimization inspired by microeconomics and game theory A timely and important advanced reference with the fast growth of smart grids Professor Chen is a pioneer of applying experimental economics to the electricity market trading mechanism, and this work brings together the latest research A companion website is available Edit
Power System Oscillations: An Introduction to Oscillation Analysis and Control (Power Electronics and Power Systems)
by Joe H. Chow Graham Rogers Ryan T. Elliott Daniel J. Trudnowski Felipe Wilches-Bernal Denis OsipovSince the publication of the first edition of this book, wide-area measurement systems (WAMS) have transformed the way that power system oscillations are monitored and studied. These systems consist of networks of time-synchronized sensors distributed over wide geographic areas—enabling new approaches not only for situational awareness but also for power system control. This fully revised and expanded edition discusses the core ideas behind WAMS, real-time situational awareness, and wide-area control as they pertain to power system oscillations. Major technological advancements since the first edition's release are covered in five new chapters. This new material highlights a first-of-its-kind demonstration project in which a 3.1 GW high-voltage direct current transmission line was used to damp inter-area oscillations in a large interconnection. It also discusses oscillations in systems dominated by inverter-based generation, including forced oscillations, which arise not from resonances but exogenous system inputs. The book includes many worked examples throughout the text using the Power System Toolbox with MATLAB, allowing readers to analyze and/or reproduce every example independently. Power System Oscillations, Second Edition, will be a valuable reference for practicing power system engineers working in the electric utility industry. Professors, students, and research scientists studying power system dynamics will also find it to be a welcomed reference text.
Power System Protection (IEEE Press Series on Power and Energy Systems)
by Brian Johnson Paul M. Anderson Sakis Meliopoulos Charles Henville Rasheek RifaatA newly updated guide to the protection of power systems in the 21st century Power System Protection, 2nd Edition combines brand new information about the technological and business developments in the field of power system protection that have occurred since the last edition was published in 1998. The new edition includes updates on the effects of short circuits on: Power quality Multiple setting groups Quadrilateral distance relay characteristics Loadability It also includes comprehensive information about the impacts of business changes, including deregulation, disaggregation of power systems, dependability, and security issues. Power System Protection provides the analytical basis for design, application, and setting of power system protection equipment for today's engineer. Updates from protection engineers with distinct specializations contribute to a comprehensive work covering all aspects of the field. New regulations and new components included in modern power protection systems are discussed at length. Computer-based protection is covered in-depth, as is the impact of renewable energy systems connected to distribution and transmission systems.
Power System Protection and Relaying: Computer-Aided Design Using SCADA Technology
by John Fuller Samir I. AboodThis textbook provides an excellent focus on the advanced topics of the power system protection philosophy and gives exciting analysis methods and a cover of the important applications in the power systems relaying. Each chapter opens with a historical profile or career talk, followed by an introduction that states the chapter objectives and links the chapter to the previous ones, and then the introduction for each chapter. All principles are presented in a lucid, logical, step-by-step approach. As much as possible, the authors avoid wordiness and detail overload that could hide concepts and impede understanding. In each chapter, the authors present some of the solved examples and applications using a computer program. Toward the end of each chapter, the authors discuss some application aspects of the concepts covered in the chapter using a computer program. In recognition of requirements by the Accreditation Board for Engineering and Technology (ABET) on integrating computer tools, the use of SCADA technology is encouraged in a student-friendly manner. SCADA technology using the Lucas-Nulle GmbH system is introduced and applied gradually throughout the book. Practice problems immediately follow each illustrative example. Students can follow the example step by step to solve the practice problems without flipping pages or looking at the book's end for answers. These practice problems test students' comprehension and reinforce key concepts before moving on to the next section. Power System Protection and Relaying: Computer-Aided Design Using SCADA Technology is intended as a textbook for a senior-level undergraduate student in electrical and computer engineering departments and is appropriate for graduate students, industry professionals, researchers, and academics. The book has more than ten categories and millions of power readers. It can be used in more than 400 electrical engineering departments at top universities worldwide. Based on this information, targeted lists of the engineers from specific disciplines include the following: Electrical, computer, power control, technical power system, protection, design, and distribution engineers Designed for a three–hours semester course on "power system protection and relaying," the prerequisite for a course based on this book are knowledge of standard mathematics, including calculus and complex numbers.