- Table View
- List View
Polymer Chemistry
by Sebastian Koltzenburg Michael Maskos Oskar NuykenAwarded the Literature Prize of the VCI This comprehensive textbook describes the synthesis, characterization and technical and engineering applications of polymers. Polymers are unique molecules and have properties different from any other class of materials. We encounter them in everyday life, not only in the form of the well-known, large-volume plastics such as PE or PP or the many other special polymers, some of which are very specifically modified but also in nature as polymeric biomolecules, such as DNA. Our life, as we know it, would not only be completely different without macromolecules but it would also be biologically impossible. This textbook provides a broad knowledge of the basic concepts of macromolecular chemistry and the unique properties of this class of materials. Environmentally relevant topics, such as biopolymers and microplastic, which should not be missing in a contemporary textbook are also covered. Building on basic knowledge of organic chemistry and thermodynamics, the book presents an easy-to-understand yet in-depth picture of this very dynamic and increasingly important interdisciplinary science that involves elements of chemistry, physics, engineering, and the life sciences. Readers of this work can confirm their understanding of the text at the end of each chapter by working through a selection of exercises. In writing the book, great importance was attached to good readability despite the necessary depth of detail. It is a book that is just as suitable for students of chemistry and related courses as it is for the applied scientist in an industrial environment. The first edition of this work is so far the only textbook on polymer chemistry to be awarded the Literature Prize of the Fund of the German Chemical Industry Association in 2015.
Polymer Chemistry: The Basic Concepts
by Timothy P. LodgeA well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations. The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout. This revised edition: Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed. Contains mathematical tools and step-by-step derivations for example problems. Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals. Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.
Polymer Coatings: A Guide to Chemistry, Characterization, and Selected Application
by Gijsbertus De WithA practical guide to polymer coatings that covers all aspects from materials to applications Polymer Coatings is a practical resource that offers an overview of the fundamentals to the synthesis, characterization, deposition methods, and recent developments of polymer coatings. The text includes information about the different polymers and polymer networks in use, resins for solvent- and water-based coatings, and a variety of additives. It presents deposition methods that encompass frequently used mechanical and electrochemical approaches, in addition to the physical-chemical aspects of the coating process. The author covers the available characterization methods including spectroscopic, morphological, thermal and mechanical techniques. The comprehensive text also reviews developments in selected technology areas such as electrically conductive, anti-fouling, and self-replenishing coatings. The author includes insight into the present status of the research field, describes systems currently under investigation, and draws our attention to yet to be explored systems. This important text: • Offers a thorough overview of polymer coatings and their applications • Covers different classes of materials, deposition methods, coating processes, and ways of characterization • Contains a text that is designed to be accessible and helps to apply the acquired knowledge immediately • Includes information on selected areas of research with imminent application potential for functional coatings Written for chemists in industry, materials scientists, polymer chemists, and physical chemists, Polymer Coatings offers a text that contains the information needed to gain an understanding of the charaterization and applications of polymer coatings.
Polymer Coatings: Technologies And Applications
by Jyotishkumar Parameswaranpillai Suchart Siengchin Sanjay Mavinkere RangappaPolymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut’s University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut’s University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut’s University of Technology North Bangkok, Thailand.
Polymer Composites II: Composites Applications in Infrastructure Renewal and Economic Development
by Robert C. Creese Hota GangaRaoBased on polymer conferences held in 1999 and 2001, Polymer Composites II: Composites Applications in Infrastructure Renewal and Economic Development is a collection of status reports, success stories, and new opportunities from specific composite applications in infrastructure renewal that provide insight to the resulting economic development and effects. This volume brings together multidisciplinary experts involved with polymer composites who validate their design, construction, and performance and present the role that composites play in infrastructure renewal, detail the technical and regualtory barriers, identify helpful agencies, and estimate the possibilities of economic development.
Polymer Composites and Nanocomposites for X-Rays Shielding (Composites Science and Technology)
by It Meng Low Nurul Zahirah Noor AzmanThis book focuses on the processing, materials design, characterisation, and properties of polymer composites and nanocomposites for use as electromagnetic radiation shielding materials and to enhance radiation shielding capacity in order to meet the safety requirements for use in medical X-ray imaging facilities. It presents an in-depth analysis of materials synthesis methods such as melt-mixing, ion-implantation, solution casting and electrospinning. In addition, it measures the X-ray attenuation behaviour of fabricated composites and nanocomposites in four major types of X-ray equipment, namely general radiography, mammography, X-ray absorption spectroscopy and X-ray fluorescence spectroscopy units. Given its scope, the book will benefit researchers, engineers, scientists and practitioners in the fields of medical imaging, diagnostic radiology and radiation therapy.
Polymer Composites for Electrical Engineering (IEEE Press)
by Xingyi Huang Toshikatsu TanakaExplore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The book's relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.
Polymer Composites with Carbonaceous Nanofillers
by Sie Chin TjongWritten by an expert in the field of nanomaterials, composites, and polymers, this book provides up-to-date information on recent advances in various aspects of polymer composites reinforced by carbonaceous nanofillers, including their fabrication and their electrical, thermal, and mechanical properties. It also extensively covers applications of these nanocomposites in fuel cells, sensors, electromagnetic interference shielding, human implants and scaffolds.
Polymer Composites – Polyolefin Fractionation – Polymeric Peptidomimetics – Collagens
by Akihiro Abe Hans-Henning Kausch Harald Pasch Martin MöllerTechnology and Development of Self-Reinforced Polymer Composites, by Ben Alcock und Ton Peijs; Recent Advances in High-Temperature Fractionation of Polyolefins, by Harald Pasch, Muhammad Imran Malik und Tibor Macko ; Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides, by Karen Lienkamp, Ahmad E. Madkour und Gregory N. Tew; Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective, by Molamma P. Prabhakaran;
Polymer Composites, Biocomposites
by Sabu Thomas S. K. Malhotra Kuruvilla Joseph M. S. Sreekala Koichi GodaPolymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles.This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites.The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications.Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Polymer Composites, Macro- and Microcomposites: Volume 1: Composites (Green Chemistry Ser. #Volume 16)
by Sabu Thomas Kuruvilla Joseph Koichi Goda Sant Kumar Malhotra Meyyarappallil Sadasivan SreekalaThe first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part looks at macro systems, with an emphasis on fiber reinforced polymer composites, textile composites, and polymer hybrid composites. Likewise, the final section deals with micro systems, including micro particle reinforced polymer composites, the synthesis, surface modification and characterization of micro particulate fillers and flakes as well as filled polymer micro composites, plus applications and the recovery, recycling and life cycle analysis of synthetic polymeric composites.
Polymer Composites, Nanocomposites
by Sabu Thomas S. K. Malhotra Kuruvilla Joseph M. S. Sreekala Koichi GodaPolymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles. This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites. The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications. Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.
Polymer Composites: From Computational to Experimental Aspects (Materials Horizons: From Nature to Nanomaterials)
by Akarsh Verma Sushanta K. Sethi Hariome Sharan GuptaThis book is intended to shed light on the computational modeling and experimental techniques that are used in the characterization of various polymer based composite materials. It covers mechanisms, salient features, formulations, important aspects, and case studies of polymer composite materials utilized for various applications. The latest research in this area as well as possible avenues of future research is also highlighted to encourage the researchers.
Polymer Composites: Fundamentals and Applications (Engineering Materials)
by Santosh K. Tiwari Srikanta Moharana Bibhuti B. Sahu Arpan Kumar NayakThis book highlights the fundamentals and recent advances for developing novel polymer composites for various applications, including 3D printing, automotive, textiles, agriculture, nanogenerators, energy storage and biomedical engineering. It presents various facile processing techniques to prepare polymeric composites with attractive properties like mechanical strength, flexibility, thermal & electrical performances for end used applications from bench to field. This in-sight of properties, performances and utility will lead to technological applications of polymer composites. It provides a platform for evolving and expanding technological solutions for challenges in the contemporary world, and presents a concrete path for advancement in this domain of polymer composite for professionals, researchers, material scientists, and students.
Polymer Concretes: Advanced Construction Materials
by Mostafa Hassani Niaki Morteza Ghorbanzadeh AhangariPolymer Concretes: Advanced Construction Materials provides a comprehensive study on polymer concrete (PC), discussing historical perspectives of its use, the classification and applications of PC, and the advantages and disadvantages of its use. Materials such as resin, aggregates, micro fillers, fibers, and nanofillers are systematically summarized, as well as their effects on PC. Also examined are the properties, fabrication methods, and the standards for testing the material properties, as well as the future outlook for PC applications. This book: Investigates the various properties of PC Covers the physical, mechanical, thermal, chemical, electrical, and environmental properties of PC Examines fabrication methods, standards for testing, and the future outlook for various applications The book is ideal for students taking related courses in Civil, Mechanical, Chemical, and Material Engineering. It also serves as a useful guide for researchers in the areas of concrete and construction materials, composites and nanocomposites, and advanced materials, as well as professionals working in fields such as construction, precast concrete products manufacture, transportation and road construction, architecture, and more.
Polymer Crystallization I
by Finizia Auriemma Giovanni Carlo Alfonso Claudio RosaThe series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Polymer Crystallization II
by Finizia Auriemma Claudio De Rosa Giovanni Carlo AlfonsoThe series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Polymer Devolatilization
by Ramon J. AlbalakThis work introduces the fundamental background necessary to understand polymer devolatilization. It elucidates the actual mechanisms by which the devolatilization of polymer melts progresses, and discusses virtually every type of devolatilization equipment available. The work also addresses devolatilization in various geometries and types of equipment, describing the use of falling strand, slit, single-screw, co-rotating and counter-rotating twin-screw devolatilization.
Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation
by Michael Eikerling Andrei KulikovskyThe book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op
Polymer Electrolytes and their Composites for Energy Storage/Conversion Devices (Emerging Materials and Technologies)
by Anurag Gaur Anil Arya Achchhe Lal SharmaPolymer Electrolytes and their Composites for Energy Storage/Conversion Devices presents a state-of-the-art overview of the research and development in the use of polymers as electrolyte materials for various applications. It covers types of polymer electrolytes, ion dynamics, and the role of dielectric parameters and a review of applications. Divided into two parts, the first part of the book focuses on the types of polymer electrolytes, ion dynamics, and the role of dielectric parameters, while the second part provides a critical review of applications based on polymer electrolytes and their composites. This book: Presents the fundamentals of polymer composites for energy storage/conversion devices Explores the ion dynamics and dielectric properties role in polymer electrolytes Provides detailed preparation methods and important characterization techniques to evaluate the electrolyte potential Reviews analysis of current updates in polymer electrolytes Includes various applications in supercapacitor, battery, fuel cell, and electrochromic windows The book is aimed at researchers and graduate students in physics, materials science, chemistry, materials engineering, energy storage, engineering physics, and industry.
Polymer Electrolytes for Energy Storage Devices
by Prasanth Raghavan and Jabeen Fatima M. J.Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
Polymer Engineering 1: Einführung, Synthese, Eigenschaften
by Peter Eyerer Helmut SchüleDas Fachwissen über Technologien im Polymer Engineering ist neben dem Nachschlagewerk ''Domininghaus'' (Kunststoffe – Eigenschaften und Anwendungen) als Fach- und Lehrwerk zugleich Referenz für die industrielle Produktion und den Einsatz von Polymerwerkstoffen. Wichtige Abschnitte wie Oberflächentechnologien für Kunststoffbauteile und die Prüfung von Kunststoffen und Bauteilen wurden ergänzt um ein neues Kapitel über synthetische und natürliche Polymere und Faserverbundwerkstoffe. Den Grundlagen zum Extrudieren, dem Blasformen und Kalandrieren, den Polyurethanschäumen, der Mikrowellentechnologie, dem Rapid Prototyping und Molded Interconnected Devices, der Plasmatechnologie und den Trocknungsverfahren, konstruktives Gestalten, Fügen und Verbinden, Berechnungsansätze und Simulation, den Bauteilkosten, den Prüfungen an Thermoplasten/Duroplasten/Elastomeren und der Produktqualifikation sind weitere aktualisierte Abschnitte gewidmet. Ausgewählte Technologien werden zusammengefasst dargestellt.Band 1 des dreibändigen Werkes beinhaltet die Einführung und behandelt die Synthese von Polymeren sowie deren Eigenschaften.
Polymer Engineering 2: Verarbeitung, Oberflächentechnologie, Gestaltung
by Peter Eyerer Helmut SchülePolymere in technischen Produkten können unter ganzheitlicher Betrachtung nachhaltig und sicher eingesetzt werden.Für Werkstoffe, Komponenten und Produktsysteme gibt dieses Werk nachhaltige Antworten auf die wichtigen technischen, wirtschaftlichen, ökologischen und sozial relevanten komplexen Fragestellungen. Der Inhalt wurde gegenüber der Vorauflage sorgfältig bearbeitet und erheblich erweitert. Die Gliederung des Werks umfasst auch die Gestaltung von Kunststoffbauteilen, die Oberflächentechnologien für Kunststoffbauteile und die Prüfung von Kunststoffen und Bauteilen. In den Ausführungen gibt es umfangreiche Informationen, Übersichten und Ergänzungen zum Extrudieren, Blasformen, Kalandrieren, Polyurethanschäumen, zur Mikrowellentechnologie, zu additiven Verfahren, über Molded Interconnected Devices, Plasmatechnologie, Trocknungsverfahren, zum Gestalten, Fügen und Verbinden, Berechnungsansätze und Simulation, über Bauteilkosten, sowie Prüfungen an Thermoplasten/Duroplasten/Elastomeren und zur Produktqualifikation. Ausgewählte Technologien werden zusammengefasst dargestellt.Band 2 des dreibändigen Werkes behandelt die Verarbeitung von Polymeren, Oberflächentechnologien sowie die Entwicklung und Gestaltung von Bauteilen.
Polymer Engineering 3: Werkstoff- und Bauteilprüfung, Recycling, Entwicklung
by Peter Eyerer Peter Elsner Helmut SchülePolymere in technischen Produkten können unter ganzheitlicher Betrachtung nachhaltig und sicher eingesetzt werden.Für Werkstoff, Komponenten und Produktsysteme gibt dieses Werk nachhaltige Antworten auf die wichtigen technischen, wirtschaftlichen, ökologischen und sozial relevanten komplexen Fragestellungen. Der Inhalt wurde gegenüber der Vorauflage sorgfältig bearbeitet und erheblich erweitert. Die Gliederung des Werks umfasst auch die Gestaltung von Kunststoffbauteilen, die Oberflächentechnologien für Kunststoffbauteile und die Prüfung von Kunststoffen und Bauteilen. In den Ausführungen gibt es umfangreiche Informationen, Übersichten und Ergänzungen zum Extrudieren, Blasformen, Kalandrieren, Polyurethanschäumen, zur Mikrowellentechnologie, zu additiven Verfahren, über Molded Interconnected Devices, Plasmatechnologie, Trocknungsverfahren, zum Gestalten, Fügen und Verbinden, Berechnungsansätze und Simulation, über Bauteilkosten, sowie Prüfungen an Thermoplasten/Duroplasten/Elastomeren und zur Produktqualifikation. Ausgewählte Technologien werden zusammengefasst dargestellt.Band 3 des dreibändigen Werkes beinhaltet die Werkstoff- und Bauteilprüfung, Betrachtungen zum Recycling und zur Nachhaltigkeit sowie einen Ausblick auf laufende Entwicklungen.
Polymer Engineering Science and Viscoelasticity
by Hal F. Brinson L. Catherine BrinsonThis book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers