Browse Results

Showing 50,976 through 51,000 of 74,092 results

Principles of Intelligent Automobiles

by Xiubin Zhang Muhammad Mansoor Khan

This book discusses the principle of automotive intelligent technology from the point of view of modern sensing and intelligent control. Based on the latest research in the field, it explores safe driving with intelligent vision; intelligent monitoring of dangerous driving; intelligent detection of automobile power and transmission systems; intelligent vehicle navigation and transportation systems; and vehicle-assisted intelligent technology. It draws on the author’s research in the field of automotive intelligent technology to explain the fundamentals of vehicle intelligent technology, from the information sensing principle to mathematical models and the algorithm basis, enabling readers to grasp the concepts of automotive intelligent technology. Opening up new scientific horizons and fostering innovative thinking, the book is a valuable resource for researchers as well as undergraduate and graduate students.

Principles of Intelligent Rail Transit (Advances in High-speed Rail Technology)

by Xiubin Zhang Muhammad Mansoor Khan Yeerjiang Halimu

This book systematically expounds on the scientific principles and technologies of Rail Transit Intelligent Technology based on the high development of artificial intelligence theory and technology. The contents include technical principles, theoretical algorithms and practical engineering technologies of intelligent monitoring of rail transit system, intelligent sensing and identification of train power system, intelligent technology in rail transit system operation, intelligent maintenance of carriage environment, etc. It can be used as a textbook or teaching reference book for related fields in universities, including rail transit system, communication, automation, intelligent equipment design and manufacturing, artificial intelligence, computer science and technology, electrical engineering and automation, etc. It is used as an academic reference for professionals in rail transit system design, operation, and maintenance.

Principles of Interferometric and Polarimetric Radiometry

by Ignasi Corbella

An overview of increasingly indispensable radiometric technologies Microwave radiometers have become a central part of Earth observation and radioastronomy. Most existing reference works on the subject, however, largely omit two key types of radiometers: interferometric radiometers and polarimetric radiometers. The extensive applications of these two classes of radiometer and their potential for mapping distant celestial bodies and enhancing Earth observation has made it critical for the next generation of radiometric scientists and engineers to be familiar with this technology and its principles. Principles of Interferometric and Polarimetric Radiometry meets this crucial need with a first-in-class overview of this key subject. Beginning with an introduction to the foundational concepts of microwave radiometry, it proceeds to work through a careful revision of the field’s major theory and techniques, with a particular emphasis on interferometric and polarimetric systems. The result promises to revolutionize the use of microwave passive sensors for Earth observation and beyond. Principles of Interferometric and Polarimetric Radiometry readers will also find: Broad approach that can be brought to bear in any area of microwave radiometryDetailed discussion of topics including stochastic processes, analytic signals, microwave networks, and many moreExtensive appendices incorporating key mathematics and special functions Principles of Interferometric and Polarimetric Radiometry is ideal for graduate or advanced undergraduate courses in radiometry and microwave remote sensing.

Principles of Internet of Things (Intelligent Systems Reference Library #174)

by Sheng-Lung Peng Souvik Pal Lianfen Huang

This book discusses the evolution of future-generation technologies through the Internet of things, bringing together all the related technologies on a single platform to offer valuable insights for undergraduate and postgraduate students, researchers, academics and industry practitioners. The book uses data, network engineering and intelligent decision- support system-by-design principles to design a reliable IoT-enabled ecosystem and to implement cyber-physical pervasive infrastructure solutions. It takes readers on a journey that begins with understanding the insight paradigm of IoT-enabled technologies and how it can be applied. It walks readers through engaging with real-time challenges and building a safe infrastructure for IoT-based, future-generation technologies. The book helps researchers and practitioners to understand the design architecture through IoT and the state of the art in IoT countermeasures. It also highlights the differences between heterogeneous platforms in IoT-enabled infrastructure and traditional ad hoc or infrastructural networks, and provides a comprehensive discussion on functional frameworks for IoT, object identification, IoT domain model, RFID technology, wearable sensors, WBAN, IoT semantics, knowledge extraction, and security and privacy issues in IoT-based ecosystems. Written by leading international experts, it explores IoT-enabled insight paradigms, which are utilized for the future benefit of humans. It also includes references to numerous works. Divided into stand-alone chapters, this highly readable book is intended for specialists, researchers, graduate students, designers, experts, and engineers involved in research on healthcare-related issues.

Principles of LED Light Communications

by Svilen Dimitrov Harald Haas

Balancing theoretical analysis and practical advice, this book describes all the underlying principles required to build high performance indoor optical wireless communication (OWC) systems based on visible and infrared light, alongside essential techniques for optimising systems by maximising throughput, reducing hardware complexity and measuring performance effectively. It provides a comprehensive analysis of information rate-, spectral- and power-efficiencies for single and multi-carrier transmission schemes, and a novel analysis of non-linear signal distortion, enabling the use of off-the-shelf LED technology. Other topics covered include cellular network throughput and coverage, static resource partitioning via dynamic interference-aware scheduling, realistic light propagation modelling, OFDM, optical MIMO transmission and nonlinearity modelling. Covering practical techniques for building indoor optical wireless cellular networks supporting multiple users and guidelines for 5G cellular system studies, in addition to physical layer issues, this is an indispensable resource for academic researchers, professional engineers and graduate students working in optical communications.

Principles of Laser Materials Processing: Developments and Applications (Wiley Series On Processing Of Engineering Materials Ser. #4)

by Elijah Kannatey-Asibu Jr.

Principles of Laser Materials Processing Authoritative resource providing state-of-the-art coverage in the field of laser materials processing, supported with supplementary learning materials Principles of Laser Materials Processing goes over the most recent advancements and applications in laser materials processing, with the second edition providing a welcome update to the successful first edition through updated content on the important fields within laser materials processing. The text includes solved example problems and problem sets suitable for the readers’ further understanding of the technology explained. Split into three parts, the text first introduces basic concepts of lasers, including the characteristics of lasers and the design of their components, to aid readers in their initial understanding of the technology. The text then reviews the engineering concepts that are needed to analyze the different processes. Finally, it delves into the background of laser materials and provides a state-of-the-art compilation of material in the major application areas, such as laser cutting and drilling, welding, surface modification, and forming, among many others. It also presents information on laser safety to prepare the reader for working in the industry sector and provide practicing engineers the updates needed to work safely and effectively. In Principles of Laser Materials Processing, readers can expect to find specific information on: Laser generation principles, including basic atomic structure, atomic transitions, population distribution, absorption, and spontaneous emission Optical resonators, including standing waves in a rectangular cavity, planar resonators, beam modes, line selection, confocal resonators, and concentric resonators Laser pumping, including optical pumping, arc/flash lamp pumping, energy distribution in the active medium, and electrical pumping Broadening mechanisms, including line-shape functions, homogeneous broadening such as natural and collision, and inhomogeneous broadening Principles of Laser Materials Processing is highly suitable for senior undergraduate and graduate students studying laser processing, and non-traditional manufacturing processes; it is also aimed at researchers to provide additional information to be used in research projects that are to be undertaken within the technology field.

Principles of Lasers

by Orazio Svelto

This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text's essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding.

Principles of Loads and Failure Mechanisms

by T Tinga

Failure of components or systems must be prevented by both designers and operators of systems, but knowledge of the underlying mechanisms is often lacking. Since the relation between the expected usage of a system and its failure behavior is unknown, unexpected failures often occur, with possibly serious financial and safety consequences. Principles of Loads and Failure Mechanisms. Applications in Maintenance, Reliability and Design provides a complete overview of all relevant failure mechanisms, ranging from mechanical failures like fatigue and creep to corrosion and electric failures. Both qualitative and quantitative descriptions of the mechanisms and their governing loads enable a solid assessment of a system's reliability in a given or assumed operational context. Moreover, a unique range of applications of this knowledge in the fields of maintenance, reliability and design are presented. The benefits of understanding the physics of failure are demonstrated for subjects like condition monitoring, predictive maintenance, prognostics and health management, failure analysis and reliability engineering. Finally, the role of these mechanisms in design processes and design for maintenance are illustrated.

Principles of Machine Operation and Maintenance

by Dick Jeffrey

This book explains how rotating machinery works, and the role of the maintenance engineer in ensuring its proper operation. Stress is laid on the need for the trainee engineer to develop skills in diagnosis and troubleshooting as well as practicalexpertise in maintenance procedures.

Principles of Marine Bioacoustics

by Whitlow W. Au Mardi C. Hastings

This book is about studying the acoustics of marine animals using underwater acoustic techniques. Marine bioacoustics is a very broad interdisciplinary field that covers diverse areas as the production and reception of sound by researchers, the production and reception of sound by marine animals, the nature of sound propagation in the ocean, the nature of sound propagation in small tanks and other enclosure, signal processing techniques to acquire and store acoustic signals either on tape or in a computer, the analysis of sounds produced by marine animals, the characterization of hearing and sound production by marine animals, psycho-acoustic testing procedures, electrophysiological measurement procedures to name a few. Therefore, an accomplished bioacoustician must have some knowledge not only in the physics and mathematics of sounds but in the various areas mentioned above. This book attempts to discuss and unite the various areas of marine bioacoustics in a single text in as comprehensive manner possible.

Principles of Mechanics: Fundamental University Physics (Advances in Science, Technology & Innovation)

by Salma Alrasheed

This open access textbook takes the reader step-by-step through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations.The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.

Principles of Medical Imaging for Engineers: From Signals to Images

by Michael Chappell

This introduction to medical imaging introduces all of the major medical imaging techniques in wide use in both medical practice and medical research, including Computed Tomography, Ultrasound, Positron Emission Tomography, Single Photon Emission Tomography and Magnetic Resonance Imaging. Principles of Medical Imaging for Engineers introduces fundamental concepts related to why we image and what we are seeking to achieve to get good images, such as the meaning of ‘contrast’ in the context of medical imaging. This introductory text separates the principles by which ‘signals’ are generated and the subsequent ‘reconstruction’ processes, to help illustrate that these are separate concepts and also highlight areas in which apparently different medical imaging methods share common theoretical principles. Exercises are provided in every chapter, so the student reader can test their knowledge and check against worked solutions and examples.The text considers firstly the underlying physical principles by which information about tissues within the body can be extracted in the form of signals, considering the major principles used: transmission, reflection, emission and resonance. Then, it goes on to explain how these signals can be converted into images, i.e., full 3D volumes, where appropriate showing how common methods of ‘reconstruction’ are shared by some imaging methods despite relying on different physics to generate the ‘signals’. Finally, it examines how medical imaging can be used to generate more than just pictures, but genuine quantitative measurements, and increasingly measurements of physiological processes, at every point within the 3D volume by methods such as the use of tracers and advanced dynamic acquisitions. Principles of Medical Imaging for Engineers will be of use to engineering and physical science students and graduate students with an interest in biomedical engineering, and to their lecturers.

Principles of Medical Imaging for Engineers: From Signals to Images

by Michael Chappell

This textbook is a concise introduction to medical imaging aimed at physical scientists and engineers, including budding biomedical engineers and biophysicists. The book introduces fundamental concepts related to how we "see" inside the body using medical imaging technology and what is needed to obtain useful images. The text first considers the underlying physical principles by which information about tissues within the body can be extracted in the form of signals, examining the major principles used: transmission, reflection, emission, and resonance. It then explains how these signals can be converted into images, i.e., full 3D volumes, demonstrating how common methods of "reconstruction" are shared by some imaging techniques, despite relying on different physics to generate the "signals." Finally, it explores how medical imaging can be used to generate more than just pictures, but genuine quantitative measurements, and increasingly, measurements of physiological processes at every point within the 3D volume using methods such as tracers and advanced dynamic acquisitions. Now in its second, fully updated and expanded edition, the textbook contains new sections on image analysis concepts, covers a wide range of techniques used to enhance and interpret medical imaging, and includes concise introductions to optimization and machine learning in their application to medical imaging . The second edition also includes expanded discussions on quantitative, functional, physiological, and metabolic imaging. 'Principles of Medical Imaging for Engineers&’ second edition will be invaluable to students and graduate students in engineering and physical sciences with an interest in biomedical engineering, as well as to their professors.

Principles of Membrane Bioreactors for Wastewater Treatment

by Hee-Deung Park In-Soung Chang Kwang-Jin Lee

Membrane bioreactor (MBR) technology is a wastewater treatment method combining biological pollutant treatment with physical membrane separation. It has gained increasing commercial significance over the last decade, with applications in municipal and industrial wastewater treatment becoming increasingly widespread. This book covers a wide variety of MBR topics, including filtration theory, membrane materials and geometry, fouling phenomena and properties, and strategies for minimizing fouling. Also covered are practical aspects such as operation, maintenance, design, and application.

Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment

by Michael P. Doyle Jeffrey Kornacki

Written with the in-plant food safety/quality assurance professional in mind, this reference offers proven approaches and suggestions for finding sources of microbiological contamination of industrially produced products.

Principles of Microelectromechanical Systems

by Ki Bang Lee

The building blocks of MEMS design through closed-form solutionsMicroelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications.Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purposeAll chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms.This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.

Principles of Mobile Computing and Communications

by Mazliza Othman

Mobile computing technology has come a long way in recent years-providing anytime, anywhere communication and access to information. Bringing students up to date on important technological and industry developments, Principles of Mobile Computing and Communications examines mobile networks and relevant standards, highlighting issues unique to the m

Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses

by Wenzhong Shi

When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of t

Principles of Modified-Atmosphere and Sous Vide Product Packaging

by Jeffrey M. Farber

This is the first in-depth presentation in book form of both modified atmosphere and sous vide food preservation and packaging technologies and applications. The use of these technologies with all applicable food product categories is examined. The authors are specialists in these preservation/packaging methods from North America and Europe. All significant aspects are examined including processes and materials, applications, microbiological control, and regulations and guidelines. Topics of special interest include use of hurdles, HACCP, gas absorbents and generators, and time-temperature indicators. Extensive practical reference data is economically presented in tables.

Principles of Molecular Probe Design and Applications

by Wellington Pham

This book describes insight mechanisms for designing molecular probes and methods that these agents can be used for medical diagnosis in preclinical animal models via optical, MRI and PET imaging. The book has a wealth of schemes of synthesis and methods deduced from pioneers in the field, making it possible to immerse into real-world molecular imaging. Written for graduate student training and practitioners, this book will serve as a teaching material and/or reference for anyone interested in exploring the power of chemical synthesis of imaging agents.

Principles of Musical Acoustics (Undergraduate Lecture Notes in Physics)

by William M. Hartmann

Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but computational techniques are included as these concepts are introduced, and there is further technical help in appendices.

Principles of Nano-optics

by Lukas Novotny Bert Hecht

First published in 2006, this book has become the standard reference on nano-optics. Now in its second edition, the text has been thoroughly updated to take into account new developments and research directions. While the overall structure and pedagogical style of the book remain unchanged, all existing chapters have been expanded and a new chapter has been added. Adopting a broad perspective, the authors provide a detailed overview of the theoretical and experimental concepts that are needed to understand and work in nano-optics, across subfields ranging from quantum optics to biophysics. New topics of discussion include: optical antennas; new imaging techniques; Fano interference and strong coupling; reciprocity; metamaterials; and cavity optomechanics. With numerous end-of-chapter problem sets and illustrative material to expand on ideas discussed in the main text, this is an ideal textbook for graduate students entering the field. It is also a valuable reference for researchers and course teachers.

Principles of Nanomagnetism

by Alberto P. Guimarães

The second edition of this book on nanomagnetism presents the basics and latest studies of low-dimensional magnetic nano-objects. It highlights the intriguing properties of nanomagnetic objects, such as thin films, nanoparticles, nanowires, nanotubes, nanodisks and nanorings as well as novel phenomena like spin currents. It also describes how nanomagnetism was an important factor in the rapid evolution of high-density magnetic recording and is developing into a decisive element of spintronics. Further, it presents a number of biomedical applications. With exercises and solutions, it serves as a graduate textbook.

Principles of Nanophotonics (Series in Optics and Optoelectronics)

by Kiyoshi Kobayashi Motoichi Ohtsu Takashi Yatsui Makoto Naruse Tadashi Kawazoe

Coauthored by the developer of nanophotonics,this book outlines physically intuitive concepts of the subject using a novel theoretical framework that differs from conventional wave optics. After reviewing the background, history, and current status of research and development in nanophotonics and related technologies, the authors present a unique theoretical model to describe the interactions among nanometric material systems via optical near-fields. They then explore nanophotonic devices and fabrication techniques and provide examples of qualitative innovation. The final chapter looks at how the assembly of nanophotonic devices produces a nanophotonic system.

Principles of National Forest Inventory Methods: Theory, Practice, and Examples from Estonia (Managing Forest Ecosystems #43)

by Allan Sims

This Monograph explains the statistical theory behind the National Forest Inventory (NFI) data collection and compares different methods for modelling and inventory design. The author also explains how natural uncertainty in measurement and modelling can affects the results. Forests, as dynamic systems, are influenced by many unpredictable factors over time. Therefore, readers can use this book to develop the right framework of expectations, when using NFI data. The chapters give an outlook on traditional methods like sample plots, but also consider newer approaches like remote sensing. By merging these different techniqes, NFI datasets can become more reliable and facetted. One of the most contemporary developments in the field, is the use of continuous plots that offer live data at all times. Whether this data should be open to the public, is another discussion point that the author addresses. Offering a perspective from Estonia, readers will find practical examples for all discussed methods. This bridge from theory to practice, makes the volume a useful resource for scientists and decision makers in the forestry sector.

Refine Search

Showing 50,976 through 51,000 of 74,092 results