- Table View
- List View
Plant Health Under Biotic Stress: Volume 2: Microbial Interactions
by Rizwan Ali Ansari Irshad MahmoodThe book illustrates the use of putative microbial agents which provide good protection to the plant from biotic pathogens attack. An up to date knowledge on plant-microbiome interaction strategies in terms of improved sustainability has been discussed. Information from experts across the globe on the application of microbes for providing amicable solution in sustainable agriculture has been gathered. In addition, information related to microbes mediated resistance levels leading to enhanced plant health has been well presented. The chapters have emphasised the use of Plant Growth Promoting Rhizobacteria (PGPR) and other potential biocontrol agents/antagonists in the management of plant diseases which provide extensive information to the readers. Literature on microbial root colonization, plant growth promotions, and also on the protection of plants from attack of various soil borne pathogens have been presented in a coherent way. Information on the application of potential strain of the bio-control fungi, endophytes, actinomycetes strengthening the plants ability which rescue the plant from pathogens attack leading to improved plant health has also been underpinned.
Plant Hormones and Climate Change
by Golam Jalal Ahammed Jingquan YuThis book provides new insights into the mechanisms of plant hormone-mediated growth regulation and stress tolerance covering the most recent biochemical, physiological, genetic, and molecular studies. It also highlights the potential implications of plant hormones in ensuring food security in the face of climate change. Each chapter covers particular abiotic stress (heat stress, cold, drought, flooding, soil acidity, ozone, heavy metals, elevated CO2, acid rain, and photooxidative stress) and the versatile role of plant hormones in stress perception, signal transduction, and subsequent stress tolerance in the context of climate change. Some chapters also discuss hormonal crosstalk or interaction in plant stress adaptation and highlight convergence points of crosstalk between plant hormones and environmental signals such as light, which are considered recent breakthrough studies in plant hormone research. As exogenous application or genetic manipulation of hormones can alter crop yield under favorable and/or unfavorable environmental conditions, the utilization of plant hormones in modern agriculture is of great significance in the context of global climate change. Thus, it is important to further explore how hormone manipulation can secure a good harvest under challenging environmental conditions. This volume is dedicated to Sustainable Development Goals (SDGs) 2 and 13. The volume is suitable for plant science-related courses, such as plant stress physiology, plant growth regulators, and physiology and biochemistry of phytohormones for undergraduate, graduate, and postgraduate students at colleges and universities. The book can be a useful reference for academicians and scientists involved in research related to plant hormones and stress tolerance.
Plant Image Analysis: Fundamentals and Applications
by S. Dutta Gupta Yasuomi IbarakiThe application of imaging techniques in plant and agricultural sciences had previously been confined to images obtained through remote sensing techniques. Technological advancements now allow image analysis for the nondestructive and objective evaluation of biological objects. This has opened a new window in the field of plant science. Plant Image
Plant Litter
by Björn Berg Charles McclaughertySince the publication of the 2nd edition, there have been substantial developments in the field of litter decomposition. This fully revised and updated 3rd edition of Plant Litter reflects and discusses new findings and re-evaluates earlier ones in light of recent research and with regard to current areas of investigation. The availability of several long-term studies allows a more in-depth approach to decomposition patterns and to the later stages of decomposition, as well as to humus formation and accumulation. The latest information focuses on three fields: - the effects of manganese on decomposition and possibly on carbon sequestration, - new findings on decomposition dynamics, and - the new analytical technique using 13C-NMR.
Plant Male Sterility Systems for Accelerating Crop Improvement
by Abhishek Bohra Ashok Kumar Parihar Satheesh Naik Sj Anup ChandraThis book covers all aspects of hybrid breeding technologies applied for crop improvement in major field crops. The different male sterility systems such as genetic male sterility (GMS), cytoplasmic male sterility (CMS), cytoplasmic and genetic male sterility (CGMS), and male sterility induced by the photoperiod (PGMS), temperature (TGMS), and chemicals are discussed in detail. The different chapters in this book provide a timeline of the key breakthroughs witnessed in the field of plant male sterility technologies, their application in hybrid breeding, and the relevance to the current need for food security. In-depth insights into the genetic and regulatory mechanisms of plant male sterility have been presented. This includes discussion on a variety of molecular players that induce male sterility and rescue male fertility in the hybrid plants. To enhance this book’s appeal, more emphasis has been given on the modern emerging approaches such as construction of heterotic pools that could boost hybrid breeding for enhanced crop performance amid climate change and growing population worldwide. This book is a guide for growers and industries related to field and horticultural crops. Further, it is a useful reference for plant breeders, researchers and extension workers, and students. The material can also be used for teaching undergraduate and postgraduate courses.
Plant Metal and Metalloid Transporters
by Kundan Kumar Sudhakar SrivastavaThis edited book stands as a one place knowledge hub for plant metal(loid) transporters. The book comprehensively covers holistic aspect of metal(loid) transporters involved in uptake and translocation of essential as well as toxic metal(loid)s. Essential and beneficial metal(loid)s are required in every biological process for normal plant growth and development, however in excess they are toxic. There are toxic metal(loid)s also whose accumulation in plants interferes with normal cellular functioning and hampers growth of plants. Hence, metal(loid) uptake and accumulation in plants is a highly regulated phenomenon involving the role of several transporters, enzymes, metabolites, transcription factors and post translational modifications. The book contains chapters from the experts and the contents of the book are presented in simple language and represented through beautiful and scientifically informative figures and tables. This book is of interest to teachers, researchers, doctoral and graduate students working in the area of plant physiology, environmental biotechnology, plant biotechnology metal(loid) stress, phytoremediation and crop biofortification.
Plant-Metal Interactions
by Sudhakar Srivastava Ashish K. Srivastava Penna SuprasannaMetal toxicity and deficiency are both common abiotic problems faced by plants. While metal contamination around the world is a critical issue, the bioavailability of some essential metals like zinc (Zn) and selenium (Se) can be seriously low in other locations. The list of metals spread in high concentrations in soil, water and air includes several toxic as well as essential elements, such as arsenic (As), cadmium (Cd), chromium (Cr), aluminum (Al), and selenium (Se). The problems for some metals are geographically confined, while for others, they are widespread. For instance, arsenic is an important toxic metalloid whose contamination in Southeast Asia and other parts of world is well documented. Its threats to human health via food consumption have generated immense interest in understanding plants’ responses to arsenic stress. Metals constitute crucial components of key enzymes and proteins in plants. They are important for the proper growth and development of plants. In turn, plants serve as sources of essential elements for humans and animals. Studies of their physiological effects on plants metabolism have led to the identification of crucial genes and proteins controlling metal uptake and transport, as well as the sensing and signaling of metal stresses. Plant-Metal Interactions sheds light on the latest development and research in analytical biology with respect to plant physiology. More importantly, it showcases the positive and negative impacts of metals on crop plants growth and productivity.
Plant-Microbe Dynamics: Recent Advances for Sustainable Agriculture
by Tanveer Bilal PirzadahPlants and microbes have co-evolved and interacted with each other in nature. Understanding the complex nature of the plant-microbe interface can pave the way for novel strategies to improve plant productivity in an eco-friendly manner. The microbes associated with plants, often called plant microbiota, are an integral part of plant life. The significance of the plant microbiome is a reliable approach toward sustainability to meet future food crises and rejuvenate soil health. Profiling plant-associate microbiomes (genome assemblies of all microbes) is an emerging concept in understanding plant-microbe interactions. Microbiota extends the plant capacity to acclimatize fluctuating environmental conditions through several mechanisms. Thus, unraveling the mystery of plant-microbe dynamics through latest technologies to better understand the role of metabolites and signal pathway mechanisms is very important. This book shares the latest insight on omics technologies to unravel plant-microbe dynamic interactions and other novel phytotechnologies for cleaning contaminated soils. Besides, it also provides brief insight on the recently discovered clustered regularly interspaced short palindromic repeats CRISPR-Cas9, which is a genome editing tool to explore plant-microbe interactions and how this genome editing tool helps to improve the ability of microbes/plants to combat abiotic/biotic stresses.
Plant-Microbe Interaction: An Approach to Sustainable Agriculture
by Devendra K. Choudhary Ajit Varma Narendra TutejaThe book addresses current public concern about the adverse effect of agrochemicals and their effect on the agro-ecosystem. This book also aims to satisfy and contribute to the increasing interest in understanding the co-operative activities among microbial populations and their interaction with plants. It contains chapters on a variety of interrelated aspects of plant-microbe interactions with a single theme of stress management and sustainable agriculture. The book will be very useful for students, academicians, researcher working on plant-microbe interaction and also for policy makers involved in food security and sustainable agriculture.
Plant-Microbe Interactions in Agro-Ecological Perspectives
by Dhananjaya Pratap Singh Harikesh Bahadur Singh Ratna PrabhaThis books presents an updated compilation on fundamental interaction mechanisms of microbial communities with the plant roots and rhizosphere (belowground) and leaves and aerial parts (aboveground). Plant rhizopshere recruits its own microbial composition that survive there and help plants grow and develop better under biotic and abiotic conditions. Similar is the case with the beneficial microorganisms which are applied as inoculants with characteristic functions. The mechanism of plant-microbe interactions is interesting phenomenon in biological perspectives with numerous implications in the fields. The First volume focuses on the basic and fundamental mechanisms that have been worked out by the scientific communities taking into account different plant-microbe systems. This includes methods that decipher mechanisms at cellular, physiological, biochemical and molecular levels and the functions that are the final outcome of any beneficial or non-beneficial interactions in crop plants and microbes. Recent advances in this research area is covered in different book chapters that reflect the impact of microbial interactions on soil and plant health, dynamics of rhizosphere microbial communities, interaction mechanisms of microbes with multiple functional attributes, microbiome of contrasting crop production systems (organic vs conventional), mechanisms behind symbiotic and pathogenic interactions, endophytic (bacterial and fungal) interaction and benefits, rhizoplane and endosphere associations, signalling cascades and determinants in rhizosphere, quorum sensing in bacteria and impact on interaction, mycorrhizal interaction mechanisms, induced disease resistance and plant immunization, interaction mechanisms that suppress disease and belowground microbial crosstalk with plant rhizosphere. Methods based on multiphasic and multi-omics approaches were discussed in detail by the authors. Content-wise, the book offers an advanced account on various aspects of plant-microbe interactions and valuable implications in agro-ecological perspectives.
Plant Microbe Symbiosis- Fundamentals and Advances
by Naveen Kumar AroraPlant microbe interaction is a complex relationship that can have various beneficial impacts on both the communities. An urgent need of today's world is to get high crop yields in an ecofriendly manner. Utilization of beneficial and multifaceted plant growth promoting (PGP) microorganisms can solve the problem of getting enhanced yields without disturbing the ecosystem thus leading to sustainability. For this to achieve understanding of the intricate details of how the beneficial microbes form associations with the host plant and sustain that for millions of years must be known. A holistic approach is required wherein the diversity of microbes associated with plant and the network of mechanisms by which they benefit the host must be studied and utilized. 'Plant Microbe Symbiosis - Fundamentals and Advances' provides a comprehensive understanding of positive interactions that occur between plant and microorganisms and their utilization in the fields. The book reviews the enormous diversity of plant associated microbes, the dialog between plant-microbes-microbes and mechanisms of action of PGP microbes. Utilization of PGPRs as nutrient providers, in combating phytopathogens and ameliorating the stressed and polluted soils is also explained. Importantly, the book also throws light on the unanswered questions and future direction of research in the field. It illustrates how the basic knowledge can be amalgamated with advanced technology to design the future bioformulations.
Plant-Microbes-Engineered Nano-particles: Understanding the Interaction of Plant, Microbes and Engineered Nano-particles (ENPS) (Advances in Science, Technology & Innovation)
by Pardeep Singh Rishikesh Singh Pramit Verma Rahul Bhadouria Ajay Kumar Mahima KaushikThis book presents a collection of cross-disciplinary research, with contributions addressing all key features of the plant/microbe/ENP nexus in agro-ecosystems. The uptake, transport and transformation of nanoparticles in plants have attracted more and more attention in the past several years. Especially, the impact of Engineered Nanoparticles (ENPs) on bioprocesses; low-, medium- and high-level dose responses in the microbial community of soil; and long-, medium- and short-term exposure responses, particularly microbial nitrogen transformations, are just a few of the aspects involved. Since ENPs are used in many industries, including cosmetics, agriculture, medicine, food technology and waste management, their transport through biogeochemical cycles is an important focus of many studies today.Specifically, ENP–microbe interaction has been analysed with regard to disease treatment for plants; it plays a vital role in disease inhibition by releasing metal ions that act through many pathways – e.g. reactive oxygen species (ROS) generation, DNA transformation and disruption of the cell cycle – to stop cell growth in the pathogen. Due to these properties, ENPs are also used as slow release or delayed release pesticides and fungicides, and as carrier systems for growth-promoting hormones. Despite their multiple uses in various industries, the negative effects of ENPs are still a major concern for the scientific community and consumers alike. For example, their transport to various food chains has been reported to have adverse effects. This raises a degree of doubt concerning a rapidly growing scientific field with major applications in many industries.From a sustainable development perspective and particularly to ensure food security in light of the uncertainty accompanying climate change, it is imperative to address this divergence by focusing on the plant/microbe/ENP nexus.
Plant-Microbial Interactions and Smart Agricultural Biotechnology (Microbial Biotechnology for Food, Health, and the Environment)
by Swati Tyagi, Robin Kumar, Baljeet Singh Saharan, and Ashok Kumar NaddaConsidering the ever-increasing global population and finite arable land, technology and sustainable agricultural practices are required to improve crop yield. This book examines the interaction between plants and microbes and considers the use of advanced techniques such as genetic engineering, revolutionary gene editing technologies, and their applications to understand how plants and microbes help or harm each other at the molecular level. Understanding plant-microbe interactions and related gene editing technologies will provide new possibilities for sustainable agriculture. The book will be extremely useful for researchers working in the fields of plant science, molecular plant biology, plant-microbe interactions, plant engineering technology, agricultural microbiology, and related fields. It will be useful for upper-level students and instructors specifically in the field of biotechnology, microbiology, biochemistry, and agricultural science. Features: Examines the most advanced approaches for genetic engineering of agriculture (CRISPR, TALAN, ZFN, etc.). Discusses the microbiological control of various plant diseases. Explores future perspectives for research in microbiological plant science. Plant-Microbial Interactions and Smart Agricultural Biotechnology will serve as a useful source of cutting-edge information for researchers and innovative professionals, as well as upper-level undergraduate and graduate students taking related agriculture and environmental science courses.
Plant Microbiome: Stress Response
by Dilfuza Egamberdieva Parvaiz AhmadThis book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.
Plant Microbiome and Biological Control: Emerging trends and applications (Sustainability in Plant and Crop Protection #20)
by Piyush Mathur Swarnendu RoyThis book offers a comprehensive guide to discovering, assessing, and utilizing consortia of beneficial microbes for crop protection and enhanced crop production in the context of climate change. It provides deep insights into the functional roles of the rhizomicrobiome, including AMF, endophytes, PGPRs, and the phyllomicrobiome, as well as the microbiomes of different plant parts such as seeds, fruits, and stems, in promoting plant growth, development, and the biocontrol of pests and pathogens in a sustainable manner. The book also presents the latest updates on molecular biology techniques, genetic engineering, biotechnological tools, and metagenomics, which are widely used for analyzing plant-pathogen interactions and microbial identification. It will be especially valuable for students and faculty involved in the study and teaching of plant–microbe interactions, as well as researchers working on sustainable methods for plant disease management. With cutting-edge research from leading experts, this book aims to contribute to the development of an eco-friendly, sustainable agricultural system.
Plant-microbiome Interactions for Climate-resilient Agriculture
by Umesh Pankaj Ashok Kumar Singh Piyoosh BabeleThis book provides research-based advancements into the effects of changing environmental conditions on the diverse plant-symbiont community. It summarizes the mechanisms employed by the microorganisms to improve plant tolerance towards the extreme climatic conditions. These mechanisms include metabolite exchange and metabolic cross-talk in the microbiome-root-shoot-environment nexus. This book also describes the recently discovered phenomenon, systematically-induced root exudation of metabolites, which explains how the rhizosphere microbiome governs the plant metabolism by inducing a systemic shift in root exudate metabolites. This book is then concluded by highlighting the role of advanced meta-omics tools and systemic metabolic engineering approaches in generating climate-resilient crops and microbes to tackle the cumulative degradation of soil health in agro-ecosystems. This book is a reference for students, researchers and policymakers working in the field of microbiology, soil science, plant science, climate change and sustainable agriculture.
Plant Microbiomes for Sustainable Agriculture (Sustainable Development and Biodiversity #25)
by Joginder Singh Ajar Nath Yadav Ali Asghar Rastegari Neelam YadavThis book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
Plant Micronutrients: Deficiency and Toxicity Management
by Khalid Rehman Hakeem Tariq AftabPlants require essential nutrients (macronutrients and micronutrients) for normal functioning. Sufficiency range is the levels of nutrients necessary to meet the plant’s needs for optimal growth. This range depends on individual plant species and the particular nutrient. Nutrient levels outside of a plant’s sufficiency range cause overall crop growth and health to decline, due either to deficiency or toxicity from over-accumulation. Apart from micronutrients (B, Cl, Mn, Fe, Zn, Cu and Mo), Aluminum (Al), cerium (Ce), cobalt (Co), iodine (I), lanthanum (La), sodium (Na), selenium (Se), silicon (Si), titanium (Ti), and vanadium (V) are emerging as novel biostimulants that may enhance crop productivity and nutritional quality. These beneficial elements are not "essential" but when supplied at low dosages, they augment plant growth, development, and yield by stimulating specific molecular, biochemical, and physiological pathways in responses to challenging environments.The book is the first reference volume that approaches plant micronutrient management with the latest biotechnological and omics tools. Expertly curated chapters highlight working solutions as well as open problems and future challenges in plant micronutrient deficiency or toxicity. We believe this book will introduce readers to state-of-the-art developments and research trends in this field.
Plant MicroRNAs and Stress Response
by Deepu Pandita Anu PanditaMicroRNAs (miRNAs) are small (20–24 nt), single stranded, regulatory RNA molecules or gene regulators of critical transcriptional or post-transcriptional gene regulation in plants in sequence-specific order that respond to numerous abiotic stresses and animals, non-coding, highly evolutionarily conserved and widely distributed throughout the plant kingdom. MiRNAs are master regulators of plant growth and development, development attenuation under various environmental stresses by stress-responsive miRNAs and plant stress responses and tolerance. Drought, salinity, heat, cold, UV radiation, heavy metal, pathogens, pests and other microbial infections affect survival, growth, development, quality, yield, and production of plants. Stress induced miRNAs down regulate their target miRNAs. This down regulation leads to the accumulation and function of positive regulators, highlighting their roles in stress responses and tolerance. Plant miRNA mediated modifications include overexpression or repression of stress-responsive miRNAs and/or their target complementary or partially complementary gene products, miRNA-resistant target genes, target-mimics and artificial miRNAs. Thus, miRNAs may serve as "genomic gold mines", novel, potent and potential targets in plant genetic manipulations and miRNA-based biotechnology will aid plant improvement and crop-plant tolerance to different environmental stresses. This book reviews our recent understanding of plant microRNAs, biogenesis and functions, computational tools and bioinformatics, regulation of plant growth and development, expression studies, and the role of plant miRNAs in various biotic and abiotic stress-response regulation in plants.
Plant Model Greenlab for Botany and Agronomy
by Philippe De Reffye Mengzhen Kang Marc Jaeger Baogui ZhangThis book provides a general presentation of knowledge and methods in mathematical modelling and simulation of individual plants. The chapters mainly describe the algorithms of mathematical modelling, simulation and computer visualization and prospective aspects related to future developments of plant models. The book highlights the concepts coming from different disciplines and their mathematical integration to build robust, calibrated, and realistic integrative modeling solutions. Its original and groundbreaking focus is on the integration of structural and functional modeling for a living system such as a whole plant (or a crop field, a forest): most of the time, it has been believed among modeling practitioners that choices have to be made between the two, this belief no more prevails in the era of integrative (well-conceptually grounded) simulations. The content of this book is sufficient for a non-specialist to understand the fundamentals of mathematical modelling of plant architecture. Readers or even software developers can supplement their knowledge by consulting the book.
Plant Molecular Breeding in Genomics Era: Applications (Advances in Plant Breeding Strategies #4)
by Jameel M. Al-Khayri Krishnananda Pralhad Ingle Shri Mohan Jain Suprasanna PennaOver the years, the interventions of genomics tools have paved the way for molecular breeding to meet the challenges of food security and climate resilience. Advances in plant molecular breeding encompassing approaches of genomics, molecular markers, genetic transformation and genome editing have revolutionized crop improvement. Successful application of these tools has led to improvement of a wide range of traits of agronomic relevance. This book provides a comprehensive coverage of successful applications of molecular approaches that can be integrated within plant breeding programs aimed at improvement of crop plants. The book covers all relevant areas of molecular breeding applications in plants, with many examples drawn from the advanced genomics and molecular breeding research. Chapters present a critical appraisal of the current literature in the respective fields of molecular breeding written by expert authors. Each chapter provides in-depth discussion of the subject supported with high-quality color illustrations relevant data and future research perspective and, a comprehensive list of pertinent references.
Plant Molecular Breeding in Genomics Era: Concepts and Tools (Advances in Plant Breeding Strategies #3)
by Jameel M. Al-Khayri Krishnananda Pralhad Ingle Shri Mohan Jain Suprasanna PennaAdvances in plant genomics, plant molecular biology and genome editing have revolutionized opportunities for more efficient plant breeding. Successful application requires a concrete understanding of the concepts. Molecular Plant Breeding is an interface of issues from basic concepts to applications to crop improvement. The tools include molecular marker technology, gene mapping, genetic transformation, precise gene editing, and climate smart agriculture. This book provides a comprehensive coverage of molecular tools and methodologies that should be integrated within plant breeding programs for the improvement of crop plants. The book covers all relevant areas of molecular breeding in plants, with concepts and tools of relevance to plant genomics research and advanced molecular breeding. Chapters comprehensively review the contemporary literature on the subject and reflect the experiences of the authors. Each chapter emphasizes introduction covering related backgrounds and providesin-depth discussion of the subject supported with high-quality color illustrations and relevant data. Chapters conclude with future research perspective and, a comprehensive list of pertinent references.
Plant Molecular Farming: Applications and New Directions (SpringerBriefs in Plant Science)
by Kaiser Iqbal Wani Tariq AftabMolecular farming is a biotechnological approach that includes the genetic adjustment of agricultural products to create proteins and chemicals for profitable and pharmaceutical purposes. Plant molecular farming describes the manufacture of recombinant proteins and other biologically active product in plants. This approach depends on a genetic transformation of plants that can be accomplished by the methods of stable gene transfer, such as gene transfer to nuclei and chloroplasts, and unstable transfer methods like viral vectors. The requirement for recombinant proteins in terms of quality, quantity, and diversity is increasing exponentially This demand is traditionally met by recombinant protein construction technologies and the engineering of orthodox expression systems based on bacteria or mammalian cell cultures. However, majority of developing countries cannot afford the high costs of medicine derived from such existing methods. Hence, we need to produce not only the new drugs but also the cheaper versions of those already present in the market. Plant molecular farming is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. This book summarizes the advances and challenges of plant molecular farming for all those who are working on or have an interest in this rapidly emerging area of research.
Plant Mutagenesis: Sustainable Agriculture and Rural Landscapes (Sustainable Landscape Planning and Natural Resources Management)
by Nitish KumarThis book emphasizes recent developments in the use of mutation technologies for crop plant improvement and, ultimately, sustainable development. Plant breeders use genetic variation, which is created by plant-induced mutation, to create new and improved cultivars. The development of improved cultivars is a productive and optimistic agricultural strategy for economic and environmental sustainability since it ensures high yield stability, enhances soil health, and poses no environmental risks. Understanding mutation induction and exploring its uses have paved the road for improving genetic diversity for different plants and agronomic features and advanced gene discovery for diverse qualities that aid in sustainable development. Plant mutation breeding imitates spontaneous mutation, the primary force driving evolution, by using a plant's own genetic resources instead of genetic transformation. In order to develop beneficial agricultural features, this strategy focuses on the application of various chemical and physical mutagens in conjunction with biotechnologies. In order to survive in challenging environments, increase nutritional value, fight diseases and pests, grow in salty soils, and utilize water and nutrients more effectively, new varieties of plants are developed.This approach has significantly boosted the economies of nations like China, India, Japan, Pakistan, and the USA. As of right now, the strategy has produced and disseminated more than 3600 mutant types in the majority of crop plants, having a significant economic impact. This book discusses several mutation induction techniques, mutant screening, genome editing, the haploid breeding system for mutations, as well as genomic developments, and mutant gene identification. Plant breeders, researchers, and students in the fields of plant sciences, agriculture, and food science will find this instructive book to be of great help.
Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications (Nanotechnology in the Life Sciences)
by Ram PrasadAn improved understanding of the interactions between nanoparticles and plant retorts, including their uptake, localization, and activity, could revolutionize crop production through increased disease resistance, nutrient utilization, and crop yield. This may further impact other agricultural and industrial processes that are based on plant crops.This two-volume book analyses the key processes involved in the nanoparticle delivery to plants and details the interactions between plants and nanomaterials. Potential plant nanotechnology applications for enhanced nutrient uptake, increased crop productivity and plant disease management are evaluated with careful consideration regarding safe use, social acceptance and ecological impact of these technologies.Plant Nanobionics: Volume 1, Advances in the Understanding of Nanomaterials Research and Applications begins the discussion of nanotechnology applications in plants with the characterization and nanosynthesis of various microbes and covers the mechanisms and etiology of nanostructure function in microbial cells. It focuses on the potential alteration of plant production systems through the controlled release of agrochemicals and targeted delivery of biomolecules. Industrial and medical applications are included. Volume 2 continues this discussion with a focus on biosynthesis and toxicity.