Browse Results

Showing 53,201 through 53,225 of 72,916 results

Principles of Microelectromechanical Systems

by Ki Bang Lee

The building blocks of MEMS design through closed-form solutionsMicroelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications.Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purposeAll chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms.This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.

Principles of Mobile Computing and Communications

by Mazliza Othman

Mobile computing technology has come a long way in recent years-providing anytime, anywhere communication and access to information. Bringing students up to date on important technological and industry developments, Principles of Mobile Computing and Communications examines mobile networks and relevant standards, highlighting issues unique to the m

Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses

by Wenzhong Shi

When compared to classical sciences such as math, with roots in prehistory, and physics, with roots in antiquity, geographical information science (GISci) is the new kid on the block. Its theoretical foundations are therefore still developing and data quality and uncertainty modeling for spatial data and spatial analysis is an important branch of t

Principles of Modified-Atmosphere and Sous Vide Product Packaging

by Jeffrey M. Farber

This is the first in-depth presentation in book form of both modified atmosphere and sous vide food preservation and packaging technologies and applications. The use of these technologies with all applicable food product categories is examined. The authors are specialists in these preservation/packaging methods from North America and Europe. All significant aspects are examined including processes and materials, applications, microbiological control, and regulations and guidelines. Topics of special interest include use of hurdles, HACCP, gas absorbents and generators, and time-temperature indicators. Extensive practical reference data is economically presented in tables.

Principles of Molecular Probe Design and Applications

by Wellington Pham

This book describes insight mechanisms for designing molecular probes and methods that these agents can be used for medical diagnosis in preclinical animal models via optical, MRI and PET imaging. The book has a wealth of schemes of synthesis and methods deduced from pioneers in the field, making it possible to immerse into real-world molecular imaging. Written for graduate student training and practitioners, this book will serve as a teaching material and/or reference for anyone interested in exploring the power of chemical synthesis of imaging agents.

Principles of Musical Acoustics (Undergraduate Lecture Notes in Physics)

by William M. Hartmann

Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but computational techniques are included as these concepts are introduced, and there is further technical help in appendices.

Principles of Nano-optics

by Lukas Novotny Bert Hecht

First published in 2006, this book has become the standard reference on nano-optics. Now in its second edition, the text has been thoroughly updated to take into account new developments and research directions. While the overall structure and pedagogical style of the book remain unchanged, all existing chapters have been expanded and a new chapter has been added. Adopting a broad perspective, the authors provide a detailed overview of the theoretical and experimental concepts that are needed to understand and work in nano-optics, across subfields ranging from quantum optics to biophysics. New topics of discussion include: optical antennas; new imaging techniques; Fano interference and strong coupling; reciprocity; metamaterials; and cavity optomechanics. With numerous end-of-chapter problem sets and illustrative material to expand on ideas discussed in the main text, this is an ideal textbook for graduate students entering the field. It is also a valuable reference for researchers and course teachers.

Principles of Nanomagnetism

by Alberto P. Guimarães

The second edition of this book on nanomagnetism presents the basics and latest studies of low-dimensional magnetic nano-objects. It highlights the intriguing properties of nanomagnetic objects, such as thin films, nanoparticles, nanowires, nanotubes, nanodisks and nanorings as well as novel phenomena like spin currents. It also describes how nanomagnetism was an important factor in the rapid evolution of high-density magnetic recording and is developing into a decisive element of spintronics. Further, it presents a number of biomedical applications. With exercises and solutions, it serves as a graduate textbook.

Principles of Nanophotonics (Series in Optics and Optoelectronics)

by Kiyoshi Kobayashi Motoichi Ohtsu Takashi Yatsui Makoto Naruse Tadashi Kawazoe

Coauthored by the developer of nanophotonics,this book outlines physically intuitive concepts of the subject using a novel theoretical framework that differs from conventional wave optics. After reviewing the background, history, and current status of research and development in nanophotonics and related technologies, the authors present a unique theoretical model to describe the interactions among nanometric material systems via optical near-fields. They then explore nanophotonic devices and fabrication techniques and provide examples of qualitative innovation. The final chapter looks at how the assembly of nanophotonic devices produces a nanophotonic system.

Principles of National Forest Inventory Methods: Theory, Practice, and Examples from Estonia (Managing Forest Ecosystems #43)

by Allan Sims

This Monograph explains the statistical theory behind the National Forest Inventory (NFI) data collection and compares different methods for modelling and inventory design. The author also explains how natural uncertainty in measurement and modelling can affects the results. Forests, as dynamic systems, are influenced by many unpredictable factors over time. Therefore, readers can use this book to develop the right framework of expectations, when using NFI data. The chapters give an outlook on traditional methods like sample plots, but also consider newer approaches like remote sensing. By merging these different techniqes, NFI datasets can become more reliable and facetted. One of the most contemporary developments in the field, is the use of continuous plots that offer live data at all times. Whether this data should be open to the public, is another discussion point that the author addresses. Offering a perspective from Estonia, readers will find practical examples for all discussed methods. This bridge from theory to practice, makes the volume a useful resource for scientists and decision makers in the forestry sector.

Principles of Neural Coding

by Rodrigo Quian Quiroga Stefano Panzeri

Understanding how populations of neurons encode information is the challenge faced by researchers in the field of neural coding. Focusing on the many mysteries and marvels of the mind has prompted a prominent team of experts in the field to put their heads together and fire up a book on the subject. Simply titled Principles of Neural Coding, this b

Principles of Nonlinear Filtering Theory (Algorithms and Computation in Mathematics #33)

by Stephen S.-T. Yau Xiuqiong Chen Xiaopei Jiao Jiayi Kang Zeju Sun Yangtianze Tao

This text presents a comprehensive and unified treatment of nonlinear filtering theory, with a strong emphasis on its mathematical underpinnings. It is tailored to meet the needs of a diverse readership, including mathematically inclined engineers and scientists at both graduate and post-graduate levels. What sets this book apart from other treatments of the topic is twofold. Firstly, it offers a complete treatment of filtering theory, providing readers with a thorough understanding of the subject. Secondly, it introduces updated methodologies and applications that are crucial in today’s landscape. These include finite-dimensional filters, the Yau-Yau algorithm, direct methods, and the integration of deep learning with filtering problems. The book will be an invaluable resource for researchers and practitioners for years to come. With a rich historical backdrop dating back to Gauss and Wiener, the exposition delves into the fundamental principles underpinning the estimation of stochastic processes amidst noisy observations—a critical tool in various applied domains such as aircraft navigation, solar mapping, and orbit determination, to name just a few. Substantive exercises and examples given in each chapter provide the reader with opportunities to appreciate applications and ample ways to test their understanding of the topics covered. An especially nice feature for those studying the subject independent of a traditional course setting is the inclusion of solutions to exercises at the end of the book. The book is structured into three cohesive parts, each designed to build the reader's understanding of nonlinear filtering theory. In the first part, foundational concepts from probability theory, stochastic processes, stochastic differential equations, and optimization are introduced, providing readers with the necessary mathematical background. The second part delves into theoretical aspects of filtering theory, covering topics such as the stochastic partial differential equation governing the posterior density function of the state, and the estimation algebra theory of systems with finite-dimensional filters. Moving forward, the third part of the book explores numerical algorithms for solving filtering problems, including the Yau-Yau algorithm, direct methods, classical filtering algorithms like the particle filter, and the intersection of filtering theory with deep learning.

Principles of Nuclear Radiation Detection

by Geoffrey G. Eichholz

This book is intended for senior undergraduate and beginning graduate students in physics, nuclear engineering, health physics and nuclear medicine, and for specialized training courses for radiation protection personnel and environmental safety engineers.To keep the size of the book manageable, material has been selected to stress those detectors that are in widespread use. Attempts have also been made to emphasize alternatives available in approaching various measurement problems and to present the criteria by which a choice among these alternatives may be made.

Principles of Occupational Health and Hygiene: An Introduction, Fourth Edition

by Sue Reed

Now in its fourth edition, this book allows for early career occupational hygienists and occupational health and safety professionals or students to develop their basic skills and knowledge to anticipate, recognize, evaluate, and control workplace hazards that can result in injury, illness, impairment, or affect the well-being of workers and members of the community. Principles of Occupational Health and Hygiene: An Introduction, Fourth Edition offers a comprehensive overview of occupational health risks and hazardous environments encountered in a range of industries and organizational settings.This new edition offers information on the current techniques and equipment used in assessing workplace hazards. Methods of assessment are developing at a rapid rate due to the new technologies now available. Featuring new chapters on occupational hygiene statistics and psychosocial hazards and fully updated throughout, leading industry professionals and educators explain how to identify key workplace hazards including chemical agents such as dusts, metals and gases; physical agents such as noise, radiation and extremes of heat and cold; and microbiological agents. The book highlights assessment procedures and processes for identifying exposure levels and explains how to evaluate risk and follow safety guidelines to control and manage these hazards effectively. Highly illustrated, up to date with current Workplace Health and Safety legislation and written in a jargon-free manner, this book will be a bible to any student or professional.Principles of Occupational Health and Hygiene: An Introduction, Fourth Edition is an essential reference for students, early career Occupational Hygienists professionals and anyone in an Occupational Health and Safety role.

Principles of Optics for Engineers

by Chang, William S. C.

Uniting classical and modern photonics approaches by presenting optical analyses as solutions of Maxwell's equations, this unique book enables students and practising engineers to fully understand the similarities and differences between the different methods. The book begins with a thorough discussion of plane wave analysis, which provides a clear understanding of optics without considering boundary condition or device configuration. It then goes on to cover diffraction analysis of many applications, including a rigorous analysis of TEM waves using Maxwell's equations with boundaries. Laser cavity modes and Gaussian beams are presented, modal analysis is covered, and approximation methods are discussed (including the perturbation technique, coupled mode analysis, and super mode analysis). With theory linked to practical examples throughout, it provides a clear understanding of the interplay between plane wave, diffraction and modal analysis, and how the different techniques can be applied to various areas including imaging, signal processing, and optoelectronic devices.

Principles of Optimal Design

by Douglass J. Wilde Panos Y. Papalambros

Principles of Optimal Design puts the concept of optimal design on a rigorous foundation and demonstrates the intimate relationship between the mathematical model that describes a design and the solution methods that optimize it. Since the first edition was published, computers have become ever more powerful, design engineers are tackling more complex systems, and the term optimization is now routinely used to denote a design process with increased speed and quality. This second edition takes account of these developments and brings the original text thoroughly up to date. The book now includes a discussion of trust region and convex approximation algorithms. A new chapter focuses on how to construct optimal design models. Three new case studies illustrate the creation of optimization models. The final chapter on optimization practice has been expanded to include computation of derivatives, interpretation of algorithmic results, and selection of algorithms and software. Both students and practising engineers will find this book a valuable resource for design project work.

Principles of Organic Farming

by M. Meyyappan E. Somasundaram D. Udhaya Nandhini

Principles of Organic Farming is a practical oriented text about organic crop management that provides background information as well as details of ecology-improving practices. This book is meant to give the reader a holistic appreciation of the principles and importance of organic farming and to suggest ecologically sound practices that help to develop and maintain sustainable agriculture. This book is intended as a professional basic textbook for undergraduate level students and will specifically meet the requirement of the students of organic farming being taught in all the agricultural universities across the globe. In addition, the purpose of this work is to spread the basic concepts of organic farming in order to; guide the production systems towards a sustainable agriculture and ecologically safe, obtain harmless products of higher quality, contribute to food security, generating income through the access to markets and improve working conditions of farmers and their neighborhoods.Note: T&F does not sell or distribute the hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.

Principles of Performance and Reliability Modeling and Evaluation

by Lance Fiondella Antonio Puliafito

This book presents the latest key research into the performanceand reliability aspects of dependable fault-tolerant systems and featurescommentary on the fields studied by Prof. Kishor S. Trivedi during hisdistinguished career. Analyzing system evaluation as a fundamental tenet in thedesign of modern systems, this book uses performance and dependability ascommon measures and covers novel ideas, methods, algorithms, techniques, andtools for the in-depth study of the performance and reliability aspects ofdependable fault-tolerant systems. It identifies the current challenges thatdesigners and practitioners must face in order to ensure the reliability, availability,and performance of systems, with special focus on their dynamic behaviors anddependencies, and provides system researchers, performance analysts, andpractitioners with the tools to address these challenges in their work. Withcontributions from Prof. Trivedi's former PhD students and collaborators, manyof whom are internationally recognized experts, to honor him on the occasion ofhis 70th birthday, this book serves as a valuable resource for all engineeringdisciplines, including electrical, computer, civil, mechanical, and industrialengineering as well as production and manufacturing.

Principles of Photonic Integrated Circuits: Materials, Device Physics, Guided Wave Design (Graduate Texts in Physics)

by Richard Osgood jr. Xiang Meng

This graduate-level textbook presents the principles, design methods, simulation, and materials of photonic circuits. It provides state-of-the-art examples of silicon, indium phosphide, and other materials frequently used in these circuits, and includes a thorough discussion of all major types of devices. In addition, the book discusses the integrated photonic circuits (chips) that are currently increasingly employed on the international technology market in connection with short-range and long-range data communication. Featuring references from the latest research in the field, as well as chapter-end summaries and problem sets, Principles of Photonic Integrated Circuits is ideal for any graduate-level course on integrated photonics, or optical technology and communication.

Principles of Photonics

by Liu Jia-Ming

With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

Principles of Physical Optics

by Charles A. Bennett

An intuitive and accessible approach to the fundamentals of physical optics In the newly revised Second Edition of Principles of Physical Optics, eminent researcher Dr. Charles A. Bennett delivers an intuitive and practical text designed for a one-semester, introductory course in optics. The book helps readers build a firm foundation in physical optics and gain valuable, practical experience with a range of mathematical applications, including matrix methods, Fourier analysis, and complex algebra. This latest edition is thoroughly updated and offers 20% more worked examples and 50% more homework problems than the First Edition. Only knowledge of standard introductory sequences in calculus and calculus-based physics is assumed, with the included mathematics limited to what is necessary to adequately address the subject matter. The book provides additional materials on optical imaging and nonlinear optics and dispersion for use in an accelerated course. It also offers: • A thorough introduction to the physics of waves, including the one-dimensional wave equation and transverse traveling waves on a string • Comprehensive explorations of electromagnetic waves and photons, including introductory material on electromagnetism and electromagnetic wave equations • Practical discussions of reflection and refraction, including Maxwell&’s equations at an interface and the Fresnel equations • In-depth examinations of geometric optics, as well as superposition, interference, and diffraction Perfect for advanced undergraduate students of physics, chemistry, and materials science, Principles of Physical Optics also belongs on the bookshelves of engineering students seeking a one-stop introduction to physical optics.

Principles of Physics

by Hafez A Radi John O Rasmussen

This textbook presents a basic course in physics to teach mechanics, mechanical properties of matter, thermal properties of matter, elementary thermodynamics, electrodynamics, electricity, magnetism, light and optics and sound. It includes simple mathematical approaches to each physical principle, and all examples and exercises are selected carefully to reinforce each chapter. In addition, answers to all exercises are included that should ultimately help solidify the concepts in the minds of the students and increase their confidence in the subject. Many boxed features are used to separate the examples from the text and to highlight some important physical outcomes and rules. The appendices are chosen in such a way that all basic simple conversion factors, basic rules and formulas, basic rules of differentiation and integration can be viewed quickly, helping student to understand the elementary mathematical steps used for solving the examples and exercises. Instructors teaching form this textbook will be able to gain online access to the solutions manual which provides step-by-step solutions to all exercises contained in the book. The solutions manual also contains many tips, colored illustrations, and explanations on how the solutions were derived.

Principles of Physics: For Scientists and Engineers (Undergraduate Lecture Notes in Physics)

by Hafez A Radi John O Rasmussen

This textbook presents a basic course in physics to teach mechanics, mechanical properties of matter, thermal properties of matter, elementary thermodynamics, electrodynamics, electricity, magnetism, light and optics and sound. It includes simple mathematical approaches to each physical principle, and all examples and exercises are selected carefully to reinforce each chapter. In addition, answers to all exercises are included that should ultimately help solidify the concepts in the minds of the students and increase their confidence in the subject. Many boxed features are used to separate the examples from the text and to highlight some important physical outcomes and rules. The appendices are chosen in such a way that all basic simple conversion factors, basic rules and formulas, basic rules of differentiation and integration can be viewed quickly, helping student to understand the elementary mathematical steps used for solving the examples and exercises.Instructors teaching form this textbook will be able to gain online access to the solutions manual which provides step-by-step solutions to all exercises contained in the book. The solutions manual also contains many tips, coloured illustrations, and explanations on how the solutions were derived.

Principles of Plant-Microbe Interactions

by Ben Lugtenberg

The use of microbial plant protection products is growing and their importance will strongly increase due to political and public pressure. World population is growing and the amount of food needed by 2050 will be double of what is produced now whereas the area of agricultural land is decreasing. We must increase crop yield in a sustainable way. Chemical plant growth promoters must be replaced by microbiological products. Also here, the use of microbial products is growing and their importance will strongly increase. A growing area of agricultural land is salinated. Global warming will increase this process. Plants growth is inhibited by salt or even made impossible and farmers tend to disuse the most salinated lands. Microbes have been very successfully used to alleviate salt stress of plants. Chemical pollution of land can make plant growth difficult and crops grown are often polluted and not suitable for consumption. Microbes have been used to degrade these chemical pollutants.

Principles of Plasma Discharges and Materials Processing

by Michael A. Lieberman Allan J. Lichtenberg

A new edition of this industry classic on the principles of plasma processing Plasma-based technology and materials processes have been central to the revolution of the last half-century in micro- and nano-electronics. From anisotropic plasma etching on microprocessors, memory, and analog chips, to plasma deposition for creating solar panels and flat-panel displays, plasma-based materials processes have reached huge areas of technology. As key technologies scale down in size from the nano- to the atomic level, further developments in plasma materials processing will only become more essential. Principles of Plasma Discharges and Materials Processing is the foundational introduction to the subject. It offers detailed information and procedures for designing plasma-based equipment and analyzing plasma-based processes, with an emphasis on the abiding fundamentals. Now fully updated to reflect the latest research and data, it promises to continue as an indispensable resource for graduate students and industry professionals in a myriad of technological fields. Readers of the third edition of Principles of Plasma Discharges and Materials Processing will also find: Extensive figures and tables to facilitate understanding A new chapter covering the recent development of processes involving high-pressure capacitive discharges New subsections on discharge and processing chemistry, physics, and diagnostics Principles of Plasma Discharges and Materials Processing is ideal for professionals and process engineers in the field of plasma-assisted materials processing with experience in the field of science or engineering. It is the premiere world-wide basic text for graduate courses in the field.

Refine Search

Showing 53,201 through 53,225 of 72,916 results