- Table View
- List View
Simultaneous Systems of Differential Equations and Multi-Dimensional Vibrations (Mathematics and Physics for Science and Technology)
by Luis Manuel Braga da Costa CamposSimultaneous Differential Equations and Multi-Dimensional Vibrations is the fourth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fourth book consists of two chapters (chapters 7 and 8 of the set). The first chapter concerns simultaneous systems of ordinary differential equations and focuses mostly on the cases that have a matrix of characteristic polynomials, namely linear systems with constant or homogeneous power coefficients. The method of the matrix of characteristic polynomials also applies to simultaneous systems of linear finite difference equations with constant coefficients. The second chapter considers linear multi-dimensional oscillators with any number of degrees of freedom including damping, forcing, and multiple resonance. The discrete oscillators may be extended from a finite number of degrees-of-freedom to infinite chains. The continuous oscillators correspond to waves in homogeneous or inhomogeneous media, including elastic, acoustic, electromagnetic, and water surface waves. The combination of propagation and dissipation leads to the equations of mathematical physics. Presents simultaneous systems of ordinary differential equations and their elimination for a single ordinary differential equation Includes cases with a matrix of characteristic polynomials, including simultaneous systems of linear differential and finite difference equations with constant coefficients Covers multi-dimensional oscillators with damping and forcing, including modal decomposition, natural frequencies and coordinates, and multiple resonance Discusses waves in inhomogeneous media, such as elastic, electromagnetic, acoustic, and water waves Includes solutions of partial differential equations of mathematical physics by separation of variables leading to ordinary differential equations
Simultaneously Transmitting and Reflecting Surfaces for Wireless Communications (Wireless Networks)
by Junshan Zhang Yuanwei Liu Xidong Mu Jiaqi XuThis book begins with discussing the fundamentals of Simultaneously Transmitting and Reflecting Surfaces (STARS) from the electromagnetic (EM) and communication perspectives. The basic signal and channel models for employing STARS in wireless communications is introduced as well. Then, the different categories and possible hardware implementation of STARS are highlighted. Next, the authors focus on attention to the STARS-aided wireless communications. The authors provide a comprehensive performance analysis of STARS with the outage probability, diversity gain and power scaling laws. Moreover, the operating protocols and corresponding beamforming design of STARS are discussed under different phase-shift models. As a further advance, the application of machine learning tools in STAR-aided wireless communications is introduced for addressing the beamforming design and resource allocation problems. The novel STARS-aided integrated sensing and communications (ISAC) in future wireless networks are also discussed with several case studies. Within this book, readers will find an extensive exploration of the STARS concept. The content encompasses a thorough survey of STARS research, covering principles, implementation, performance evaluation and applications. By presenting a comprehensive review of the STARS family, this book serves as a valuable resource for gaining insight into the complete pipeline of STARS research. Finally, the authors conclude the book by highlighting several future research directions for STARS. This book targets graduate, undergraduate, and postgraduate students as well as researchers working in wireless communications. Wireless communication engineers in industry and government will also want to purchase this book.
Sincerely, Emerson: A Girl, Her Letter, and the Helpers All Around Us
by Emerson WeberOne tiny act of kindness can have a huge impact. And in this heartwarming, hopeful, absolutely true story, a simple letter does just that.A true story that quickly went viral, this is now a timely, extraordinary picture book. Sincerely, Emerson follows eleven-year-old Emerson Weber as she writes a letter of thanks to her postal carrier, Doug, and creates a nationwide outpouring of love.This is a story of gratitude, hope, and recognition: for all the essential helpers we see everyday, and all those who go unseen. Perfect for sharing alongside such favorites as Pat Zietlow Miller and Jen Hill's Be Kind and Matt de la Peña and Loren Long's Love.There are lots of ways to help the world go round:Some people collect the trash. Some stock grocery shelves. Some drive buses and trains. Some help people who are sick. Some deliver our mail. And some people write letters.
Single Biomolecule Detection and Analysis: Concepts, Applications, and Future Prospects
by Fan-Gang Tseng Tuhin Subhra SantraThis collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomolecule Detection and Analysis covers single-biomolecule detection and characterization using micro/nanotechnologies and micro/nanofluidic devices, electrical and magnetic detection technologies, microscopy and spectroscopy techniques, single biomolecule optical, and nanopore devices. The text covers key important biosensors-based detection, stochastic optical reconstruction microscopy-based detection, electrochemical detection, metabolic engineering of animal cells, single-molecule intracellular delivery and tracking, terahertz spectroscopy-based detection, total internal reflection fluorescence (TIFR) detection, and Fluorescence Correlation Spectroscopy (FCS) detection. The text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. Discussing chemical process, physical process, separation, sensing, imaging, sequencing, and analysis of single-molecule detection, this text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. It covers microscopy and spectroscopy techniques for single-biomolecule detection, analysis, and their biomedical engineering applications.
Single Cell Analysis: Methods and Protocols (Methods in Molecular Biology #2752)
by Miodrag GužvićThis volume explores the latest advancements and techniques used to study cell analysis, their capabilities, and the type of results that can be obtained. The chapters in this book cover topics such as FACS; fluorescence microscopy; organic spectroscopy such as MALDI; inorganic spectroscopy such as ICP-MS; and sequencing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.Cutting-edge and practical, Single Cell Analysis: Methods and Protocols is a valuable tool for any researcher interested in learning more about this important and developing field.
Single Channel Phase-Aware Signal Processing in Speech Communication: Theory and Practice
by Mowlaee Florian Mayer Josef Kulmer Johannes StahlAn overview on the challenging new topic of phase-aware signal processing Speech communication technology is a key factor in human-machine interaction, digital hearing aids, mobile telephony, and automatic speech/speaker recognition. With the proliferation of these applications, there is a growing requirement for advanced methodologies that can push the limits of the conventional solutions relying on processing the signal magnitude spectrum. Single-Channel Phase-Aware Signal Processing in Speech Communication provides a comprehensive guide to phase signal processing and reviews the history of phase importance in the literature, basic problems in phase processing, fundamentals of phase estimation together with several applications to demonstrate the usefulness of phase processing. Key features: Analysis of recent advances demonstrating the positive impact of phase-based processing in pushing the limits of conventional methods. Offers unique coverage of the historical context, fundamentals of phase processing and provides several examples in speech communication. Provides a detailed review of many references and discusses the existing signal processing techniques required to deal with phase information in different applications involved with speech. The book supplies various examples and MATLAB® implementations delivered within the PhaseLab toolbox. Single-Channel Phase-Aware Signal Processing in Speech Communication is a valuable single-source for students, non-expert DSP engineers, academics and graduate students.
Single Element Semiconductors: Properties and Devices
by Yi Shi Shancheng YanComprehensive reference on the use of single-element semiconductor materials, such as carbon, silicon, and others, in modern electronic devices Single Element Semiconductors discusses the preparation, properties, and applications of single-element semiconductor materials in modern electronic devices. Special attention is paid to the nanostructures which show great potential in the fields of energy, electronics, and sensing due to their unique physicochemical properties. Written by a highly qualified team of researchers, Single Element Semiconductors includes information on: Properties and fabrication of carbon nanomaterials, germanium, borophene, stanene, arsenene, and antimoneneSynthesis, self-assembly, and in-plane epitaxy of horizontal silicon nanowiresBlue, black, and violet phosphorus and the controlled synthesis of tellurium nanomaterialsMost suitable applications for each element semiconductor, including in photodetectors, solar cells, batteries, biomedical sensors, and photocatalysis Single Element Semiconductors is an ideal reference for researchers and engineers seeking to advance the research and application development of single-element semiconductor materials.
Single Event Effects in Aerospace
by Edward PetersenThis book introduces the basic concepts necessary to understand Single Event phenomena which could cause random performance errors and catastrophic failures to electronics devices. As miniaturization of electronics components advances, electronics components are more susceptible in the radiation environment. The book includes a discussion of the radiation environments in space and in the atmosphere, radiation rate prediction depending on the orbit to allow electronics engineers to design and select radiation tolerant components and systems, and single event prediction.
Single Flux Quantum Integrated Circuit Design
by Eby G. Friedman Gleb KrylovHigh efficiency, large scale, stationary computing systems – supercomputers and data centers – are becoming increasingly important due to the movement of data storage and processing onto remote cloud servers. This book is dedicated to a technology particularly appropriate for this application – superconductive electronics, in particular, rapid single flux quantum circuits. The primary purpose of this book is to introduce and systematize recent developments in superconductive electronics into a cohesive whole to support the further development of large scale computing systems. A brief background into the physics of superconductivity and the operation of common superconductive devices is provided, followed by an introduction into different superconductive logic families, including the logic gates, interconnect, and bias current distribution. Synchronization, fabrication, and electronic design automation methodologies are presented, reviewing both widely established concepts and techniques as well as recent approaches. Issues related to memory, synchronization, bias networks, and testability are described, and models, circuits, algorithms, and design methodologies are discussed and placed in context. The aim of this book is to provide insight and engineering intuition into the design of large scale digital superconductive circuits and systems.
Single Flux Quantum Integrated Circuit Design
by Eby G. Friedman Gleb Krylov Tahereh JabbariHigh efficiency, large scale, stationary computing systems – supercomputers and data centers – are becoming increasingly important due to the movement of data storage and processing onto remote cloud servers. This book is dedicated to a technology particularly appropriate for this application – superconductive electronics, in particular, rapid single flux quantum circuits. The primary purpose of this book is to introduce and systematize recent developments in superconductive electronics into a cohesive whole to support the further development of large scale computing systems. A brief background into the physics of superconductivity and the operation of common superconductive devices is provided, followed by an introduction into different superconductive logic families, including the logic gates, interconnect, and bias current distribution. Synchronization, fabrication, and electronic design automation methodologies are presented, reviewing both widely established concepts and techniques as well as recent approaches. Issues related to memory, synchronization, interconnects, coupling noise, bias networks, signal interfaces, and deep scaling of superconductive structures and design for testability are described, and models, expressions, circuits, algorithms, and design methodologies are discussed and placed in context. The aim of this book is to provide insight and engineering intuition into the design of large scale digital superconductive circuits and systems.
Single Molecular Machines and Motors
by Christian Joachim Gwénaël RapenneSingle Molecular Machines and Motors brings together different approaches and strategies to design, synthesize and study single molecular machines and motors in a multidisciplinary way. Written by leading international experts, this book summarizes the advances in the field through a number of disciplines. Some contributions describe molecular chemistry such as organic, aromatics, and coordination chemistry while others address theoretical chemistry in a predictive way or through post-experimental modelling. Experimental physics with extensive use of scanning probe microscopy (STM and AFM) is discussed for examining one single molecule. This book is aimed at those who are interested in the rapidly growing field of molecular machines and motors acting and studied at the single-molecule scale. The goal of the authors and editors is to provide the reader with an up-to-date summary while also offering future perspectives on the field.
Single Molecule Mechanics on a Surface: Gears, Motors and Nanocars (Advances in Atom and Single Molecule Machines)
by Christian Joachim Francesca MorescoWritten by the leading experts of this field, this book results from the International Symposium on “Single Molecule Machines on a Surface: Gears, Train of Gears, Motors, and Cars” which took place in Toulouse, France on November 24th - 25th, 2021. The different chapters focus on describing the use of single molecule mechanics on a surface and analyze the different steps leading to the design of a single molecule nanocar. The authors present how a single molecule is rotating, how a single molecule gear can participate to a train of molecule gears to propagate motion and how this knowledge is used for the design of nanocars. The way energy is provided to a single molecule and how this energy drives it onto the surface is also analyzed. A large portion of this volume is written by the eight teams selected to participate in the Nanocar Race II event. This book is of great use to graduate students, post-doctoral fellows and researchers who are interested in single molecule mechanics and who want to know more about the fundamentals and applications of this new research field.
Single Molecule Science: Physical Principles and Models
by Dmitrii E. MakarovThe observation and manipulation of individual molecules is one of the most exciting developments in modern molecular science. Single Molecule Science: Physical Principles and Models provides an introduction to the mathematical tools and physical theories needed to understand, explain, and model single-molecule observations. This book explains the
Single Molecule Sensing Beyond Fluorescence (Nanostructure Science and Technology)
by Frank Vollmer Warwick Bowen Reuven GordonThis book provides an interesting snapshot of recent advances in the field of single molecule nanosensing. The ability to sense single molecules, and to precisely monitor and control their motion is crucial to build a microscopic understanding of key processes in nature, from protein folding to chemical reactions. Recently a range of new techniques have been developed that allow single molecule sensing and control without the use of fluorescent labels. This volume provides an overview of recent advances that take advantage of micro- and nanoscale sensing technologies and provide the prospect for rapid future progress. The book endeavors to provide basic introductions to key techniques, recent research highlights, and an outlook on big challenges in the field and where it will go in future. It is a valuable contribution to the field of single molecule nanosensing and it will be of great interest to graduates and researchers working in this topic.
Single Particle Detection And Measurement
by R S GilmoreThis book provides a summary of the state of science in teh field of single particle detection and measurement. The text delineates between those low performance detectors, capable of registering only a large number of particles and those complex, highly designed systems capable of detecting and measuring single interactions or events. The author describes the problems associated with detection, measurement and subsequent interpretation of such quantum processes. He also evolves the subject from its roots in nuclear and particle physics into latter day applications such as probes for investigation of materials and objects. The different nature and use of high-energy particles compared with photons is highlighted.
Single Particle Nanocatalysis: Fundamentals and Applications
by Weilin Xu Yuwei Zhang Tao ChenIntroduces the detailed basis and recent development of single molecule/particle nanocatalysis based on single molecule techniques This unique book introduces and summarizes the recent development of single molecule/particle nanocatalysis to provide both comprehensive coverage of fundamentals for different methods now in widespread use and the extensive applications in different catalytic systems. Chapters are mainly based on different detection methods, including single molecule fluorescence microscopy, surface plasmon resonance spectroscopy, X-ray microscopy, and surface enhanced Raman spectroscopy. The book also includes numerous basic principles of different methods and application examples and features illustrations that help clarify presentations. Single Particle Nanocatalysis: Fundamentals and Applications starts with the history and development of single molecule techniques for nanocatalysis. It then shows readers how single molecule fluorescence microscopy (SMFM) reveals catalytic kinetics and dynamics of individual nanocatalysts. Next, it examines traditional SMFM-based single molecule nanocatalysis without super-resolution (SR) imaging, before moving on to the topic of SMFM-based SR imaging in single molecule nanocatalysis. Following chapters cover scanning electrochemical microscopy for single particle nanocatalysis; surface plasmon resonance spectroscopy for single particle nanocatalysis/reactions; X-ray-based microscopy of single-particle nanocatalysis; and surface-enhanced Raman spectroscopy for single particle nanocatalysis. The book finishes by introducing some less-practiced techniques for single particle nanocatalysis/electrochemistry. -Presents a systematical and complete introduction to the subject of single particle nanocatalysis?covering all of its fundamentals and applications -Helps readers fully understand the basis, role, and recent development of single molecule nanocatalysis -Teaches researchers how to gain new knowledge to successfully conduct their own studies within this rapidly increasing new area of research Single Particle Nanocatalysis: Fundamentals and Applications is an excellent reference book for experts in this area as well as for general researchers who want to learn how to study nanocatalysis at single molecule/particle level.
Single Piles and Pile Groups Under Lateral Loading
by Lymon C. Reese William F. Van ImpeThe complexities of designing piles for lateral loads are manifold as there are many forces that are critical to the design of big structures such as bridges, offshore and waterfront structures and retaining walls. The loads on structures should be supported either horizontally or laterally or in both directions and most structures have in common t
Single Piles in Liquefiable Ground
by Rui WangThis thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be irrelevant in the reconsolidation process, while settlement is process dependent.
Single Stage to Orbit: Politics, Space Technology, and the Quest for Reusable Rocketry (New Series in NASA History)
by Andrew J. ButricaWinner of the Michael C. Robinson Prize for Historical Analysis given by the National Council on Public HistoryWhile the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparabe part of a lesser-known but no less important drama—the search for a reusable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle.Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea—that of the reusable rocket-powered single-stage-to-orbit vehicle—planners who belonged to what President Eisenhower referred to as the military-industrial complex.added experimental ("X"), "aircraft-like" capabilties and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed—not in the realization of inexpensive, reliable space transport—but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century.
Single and Cross-Layer Mimo Techniques for Imt-Advanced (River Publishers Series In Communications Ser.)
by Filippo MeucciIn the last two decades, the wireless arena has witnessed the emergence of an astonishing number of technologies which play a part in the definition of new wireless systems. Driven by the pressing capacity demand, the research community has developed several technological enablers. Fundamental technological building blocks that will be part of wireless systems in the near-future definitely include: Orthogonal Frequency Division Multiplexing (OFDM) modulation at the physical (PHY) layer, Multiple Input Multiple.Output (MIMO) systems, and a cross-layer (CL) stack design. While the benefits of OFDM have been recognized for several years, the real capacity improvement of MIMO antennae is still being debated today. As to the lastpoint, even if opportunities for CL have been pointed out for a long time, the impact on the actual legacy systems has not been noticeable, as investors are hesitant to implement the inherent design paradigm shift.Single and Cross-Layer MIMO Techniques for IMT-Advanced will present some advanced MIMO techniques where adaptivity, cross-layer approach, and MIMO antennae are analyzed together to show a deep impact on the sum-capacityachievable over the wireless link.The introduction presents the functional requirements for IMT-A candidate systems and the relation between IEEE802.16 and LTE wireless access networks. Then, in the first part, adaptive strategies are analyzedseparately at the PHY and Medium Access Control (MAC) layers. The second part presents an evolution of the previous approach, providing a cross-layer MIMO-ARQ protocol, where adaptive MIMO schemes, namely SpatialMultiplexing (SM) and STBC Alamouti, are used with ARQ protocol. A Multiple User (MU) network is served in DownLink (DL) with a Round Robin (RR) scheduler; the design is ready to include more advanced schedulers. The ARQstate machine at the MAC layer is aware of per-antenna ARQ. The interaction between the ARQ and the PHY layer, with a per-antenna ACK, allows resource exploitation to increase with per-antenna ACKs, shifting from MIMO Signal Processing Gain to MIMO Protocol Gain with no need for Channel State Information (CSI) feedback. The absence of CSI feedback at the PHY layer is an important characteristic of the proposedMIMO-ARQ cross-layer designs since MIMO CSI feedback (when feasible) drastically reduces the network efficiency.The added degrees of freedom offered by MIMO transmissions can make the difference if correctly exploited both at the physical and medium access layers, in particular for overcoming the problem of low MIMO channel ranks.The advantages of the paradigm shift from signal processing gain to protocol gain - together with the modifications to be applied at the classical protocol stack - are discussed in the final chapter.
Single- And Multi-Carrier Mimo Transmission for Broadband Wireless Systems (River Publishers Series In Information Science And Technology Ser.)
by Ramjee Prasad Muhammad Imadur Rahman Sekhar Suvra DasThe main focus of Single- and Multi-Carrier MIMO Transmission for Broadband Wireless Systems is to provide the basic understanding of the underlying techniques related to PHY-MAC design of future wireless systems. It includes basic concepts related to single- and multi-carrier transmissions together with MIMO techniques. Discussions related to different recent standards that use single- and multi-carrier transmissions are also explained.Single- and Multi-Carrier MIMO Transmission for Broadband Wireless Systems provides a comprehensive and holistic approach to the variety of technical solutions. Future system design would require these different technologies to work together, and not independently. Therefore, it is very important to analyze the effects and gains when they are put together in a unified platform. This is the prime focus of this book. Moreover, the authors include recent research results which are not yet published in another form. The book is intended to be used for lectures in graduate level courses at universities. PhD level students should also find it useful as this book will outline the fundamental concepts and design methods for PHY and MAC layers of future wireless systems. This book can also be used as a reference by engineers and developers in the industry as well as by researchers in academia. For professionals, system architects and managers who play a key role in the selection of a baseline system concept for future wireless standards, such as IMT-Advanced type architecture, the authors will include discussions, analysis and guidelines to highlight overall system level perspective.
Single- and Two-Phase Flow Pressure Drop and Heat Transfer in Tubes (Mechanical Engineering Series)
by Afshin J. GhajarThe book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
Single-Camera Video Production (Sixth Edition)
by Robert B. Musburger Michael R. OgdenThis text has been written to provide three groups of video enthusiasts with enough information to produce acceptable single-camera video productions: the media production student, the professional who needs a refresher in the basics, and the first-time video camera owner. It is a basic, introductory book designed to point the beginner in the right direction.
Single-Cell Assays: Microfluidics, Genomics, and Drug Discovery (Methods in Molecular Biology #2689)
by Paul C. H. Li Angela Ruohao WuThis detailed volume explores the use of single-cell assays in research for drug discovery, microfluidics, and more. The book delves into methodologies involving a variety of cell types and diseases, small molecules and biologics, as well as studies of the genome and transciptome. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Single-Cell Assays: Microfluidics, Genomics, and Drug Discovery serves to enable researchers to obtain a rapid overview in state-of-the-art microfluidic single-cell assays and an impression of what possibilities these assays offer to drug discovery.
Single-Chain Polymer Nanoparticles: Synthesis, Characterization, Simulations, and Applications
by Jose A. PomposoThis first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.