- Table View
- List View
Statistical Methods at the Forefront of Biomedical Advances
by Yolanda LarribaThis book presents novel statistics methods and reproducible software that helps to solve challenging problems in biomedicine. Specifically, it consists of a collection of 11 chapters contributed by some of the leading experts in the mathematical and statistical field which address new challenges in very disparate biomedical areas, such as genomics, cancer, circadian biology, microbiome, mental disorders, and more. The mathematical rigor is written in a user-friendly way to serve a general biomedical audience ranging from trainees or students to doctors, as well as scientific researchers, university departments, and PhD students.
Statistical Methods for Environmental and Agricultural Sciences
by Reza HoshmandThe first edition of this book, popular around the world, is surpassed only by this new Second Edition. Improvements such as new and revised exercises, a broad range of practical and relevant case studies, and expanded theoretical concepts make this even better for users of statistics. The book emphasizes the practical application of statistics and provides examples in various fields of environmental and agriculture sciences. Because it uses simple, non-mathematical language to present statistical techniques, the reader requires only a familiarity with elementary algebra and mathematical notations to understand and apply the concepts described. This logically organized book covers the following topics: Part 1 introduces statistical concepts as they apply to different fields of environmental and agriculture sciences and provides descriptive measures of central tendency and variability; Part 2 covers probability and sampling concepts used in inferential statistics; Part 3 presents parametric methods in hypothesis testing, which include research designs; Part 4 discusses a number of nonparametric techniques; Part 5 explains tests of association and prediction; and lastly, analysis of change over time is detailed in Part 6. The appendices contain statistical tables for reference purposes.
Statistical Methods for Food Science: Introductory Procedures for the Food Practitioner
by John A. BowerThe recording and analysis of food data are becoming increasingly sophisticated. Consequently, the food scientist in industry or at study faces the task of using and understanding statistical methods. Statistics is often viewed as a difficult subject and is often avoided because of its complexity and a lack of specific application to the requirements of food science. This situation is changing – there is now much material on multivariate applications for the more advanced reader, but a case exists for a univariate approach aimed at the non-statistician. This second edition of Statistical Methods for Food Science provides a source text on accessible statistical procedures for the food scientist, and is aimed at professionals and students in food laboratories where analytical, instrumental and sensory data are gathered and require some form of summary and analysis before interpretation. It is suitable for the food analyst, the sensory scientist and the product developer, and others who work in food-related disciplines involving consumer survey investigations will also find many sections of use. There is an emphasis on a ‘hands-on’ approach, and worked examples using computer software packages and the minimum of mathematical formulae are included. The book is based on the experience and practice of a scientist engaged for many years in research and teaching of analytical and sensory food science at undergraduate and post-graduate level. This revised and updated second edition is accompanied by a new companion website giving the reader access to the datasets and Excel spreadsheets featured in the book. Check it out now by visiting www.wiley.com/go/bower/statistical or by scanning the QR code below.
Statistical Methods for Materials Science: The Data Science of Microstructure Characterization
by Jeffrey P. Simmons Lawrence F. Drummy Charles A. Bouman Marc De GraefData analytics has become an integral part of materials science. This book provides the practical tools and fundamentals needed for researchers in materials science to understand how to analyze large datasets using statistical methods, especially inverse methods applied to microstructure characterization. It contains valuable guidance on essential topics such as denoising and data modeling. Additionally, the analysis and applications section addresses compressed sensing methods, stochastic models, extreme estimation, and approaches to pattern detection.
Statistical Methods for Quality Assurance
by Stephen B. Vardeman J. Marcus JobeThe Tools You Need To Be A Successful Engineer As you read through this new text, you'll discover the importance of Statistical Quality Control (SQC) tools in engineering process monitoring and improvement. You'll learn what SQC methods can and cannot do, and why these are valuable additions to your engineering tool kit. And instead of overwhelming you with unnecessary details, the authors make the implementation of statistical tools "user-friendly. " The rich set of examples and problems integrated throughout this book will help you gain a better understanding of where and how to apply SQC tools. Real projects, cases and data sets show you clearly how SQC tools are used in practice. Topics are covered in the right amount of detail to give you insight into their relative importance in modern quality assurance and the ability to immediately use them. This approach provides the mix of tools you'll need to succeed in your engineering career. Key Features of the Text * Provides a coherent presentation of the role of statistics in quality assurance. * Places special attention on making sure that while the technical details are absolutely correct, they do not overwhelm the reader. * Presents the material in realistic contexts, with examples and problems that are based on real-world projects, cases and data sets. * The implementation of statistical tools is user-friendly. * The statistical treatment emphasizes graphics and estimation (and de-emphasizes hypothesis testing).
Statistical Methods for Quality Improvement
by Thomas P. RyanPraise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available. " -Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.
Statistical Methods for Reliability Data (Wiley Series in Probability and Statistics)
by William Q. Meeker Luis A. Escobar Francis G. PascualAn authoritative guide to the most recent advances in statistical methods for quantifying reliability Statistical Methods for Reliability Data, Second Edition (SMRD2) is an essential guide to the most widely used and recently developed statistical methods for reliability data analysis and reliability test planning. Written by three experts in the area, SMRD2 updates and extends the long- established statistical techniques and shows how to apply powerful graphical, numerical, and simulation-based methods to a range of applications in reliability. SMRD2 is a comprehensive resource that describes maximum likelihood and Bayesian methods for solving practical problems that arise in product reliability and similar areas of application. SMRD2 illustrates methods with numerous applications and all the data sets are available on the book’s website. Also, SMRD2 contains an extensive collection of exercises that will enhance its use as a course textbook. The SMRD2's website contains valuable resources, including R packages, Stan model codes, presentation slides, technical notes, information about commercial software for reliability data analysis, and csv files for the 93 data sets used in the book's examples and exercises. The importance of statistical methods in the area of engineering reliability continues to grow and SMRD2 offers an updated guide for, exploring, modeling, and drawing conclusions from reliability data. SMRD2 features: Contains a wealth of information on modern methods and techniques for reliability data analysis Offers discussions on the practical problem-solving power of various Bayesian inference methods Provides examples of Bayesian data analysis performed using the R interface to the Stan system based on Stan models that are available on the book's website Includes helpful technical-problem and data-analysis exercise sets at the end of every chapter Presents illustrative computer graphics that highlight data, results of analyses, and technical concepts Written for engineers and statisticians in industry and academia, Statistical Methods for Reliability Data, Second Edition offers an authoritative guide to this important topic.
Statistical Methods for Spoken Dialogue Management
by Blaise ThomsonSpeech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behaviour is controlled by predefined scripts that try to anticipate what the user will say and act accordingly. But speech recognisers make many errors and humans are not predictable; the result is systems which are difficult to design and fragile in use. Statistical methods for spoken dialogue management takes a radically different view. It treats dialogue as the problem of inferring a user's intentions based on what is said. The dialogue is modelled as a probabilistic network and the input speech acts are observations that provide evidence for performing Bayesian inference. The result is a system which is much more robust to speech recognition errors and for which a dialogue strategy can be learned automatically using reinforcement learning. The thesis describes both the architecture, the algorithms needed for fast real-time inference over very large networks, model parameter estimation and policy optimisation. This ground-breaking work will be of interest both to practitioners in spoken dialogue systems and to cognitive scientists interested in models of human behaviour.
Statistical Methods in Biology: Design and Analysis of Experiments and Regression
by A. Mead S.J. Welham S.A. Gezan S.J. ClarkWritten in simple language with relevant examples, this illustrative introductory book presents best practices in experimental design and simple data analysis. Taking a practical and intuitive approach, it only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.
Statistical Methods in Control & Signal Processing (Electrical and Computer Engineering)
by Tohru Katayama Sueo SugimotoPresenting statistical and stochastic methods for the analysis and design of technological systems in engineering and applied areas, this work documents developments in statistical modelling, identification, estimation and signal processing. The book covers such topics as subspace methods, stochastic realization, state space modelling, and identification and parameter estimation.
Statistical Modeling and Applications on Real-Time Problems: Enhancing Understanding and Practical Implementation (ISSN)
by Chandra Shekhar Raghaw Raman SinhaIn the dynamic landscape of modern data analysis, this curated guide by global experts explores the latest in statistical methodologies, modeling techniques, and optimization strategies. This comprehensive text offers insights into diverse fields such as engineering, economics, medicine, and agriculture, addressing real-world challenges. It delves into the intricacies of the Lomax distribution under a Type II censoring scheme, exploring various loss functions. The compilation uncovers estimators for population proportion, product of two population means, and more, supported by empirical and simulation studies. Additionally, it scrutinizes the prevalence of caesarean section deliveries in India, correlating with socio-economic factors.This book· Traverses diverse fields for insights into real-world challenges.· Delves into the intricacies of the Lomax distribution under a Type II censoring scheme.· Uncovers estimators supported by empirical and simulation studies.· Scrutinizes the prevalence of caesarean section deliveries in India, correlating with socio-economic factors.This compilation promises a holistic exploration of advanced statistical and optimization methods, offering readers valuable insights into their pragmatic applications across a spectrum of real-world issues.
Statistical Modeling and Applications on Real-Time Problems: Unraveling Insights through Advanced Analytical Techniques (ISSN)
by Chandra Shekhar Raghaw Raman SinhaIn an era dominated by mathematical and statistical models, this book unravels the profound significance of these tools in decoding uncertainties within numerical, observational, and calculation-based data. From governmental institutions to private entities, statistical prediction models provide a critical framework for optimal decision-making, offering nuanced insights into diverse realms, from climate to production and beyond.This book·Serves as a comprehensive resource in statistical modeling, methodologies, and optimization techniques across various domains.·Features contributions from global authors; the compilation comprises 10 insightful chapters, each addressing critical aspects of estimation and optimization through statistical modeling.·Covers a spectrum of topics, from non-parametric goodness-of-fit statistics to Bayesian applications; the book explores novel resampling methods, advanced measures for empirical mode, and transient behavior analysis in queueing systems.·Includes asymptotic properties of goodness-of-fit statistics, practical applications of Bayesian Statistics, modifications to the Hard EM algorithm, and explicit transient probabilities.·Culminates with an exploration of an inventory model for perishable items, integrating preservation technology and learning effects to determine the economic order quantity.This book stands as a testament to global collaboration, offering a rich tapestry of commendable statistical and mathematical modeling alongside real-world problem-solving. It is poised to ignite further exploration, discussion, and innovation in the realms of statistical modeling and optimization.
Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev
by David Oakes Anthony Almudevar Jack HallThis book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.
Statistical Modeling of Reliability Structures and Industrial Processes (ISSN)
by Ioannis S. Triantafyllou Mangey RamThis reference text introduces advanced topics in the field of reliability engineering, introduces statistical modeling techniques, and probabilistic methods for diverse applications.It comprehensively covers important topics including consecutive-type reliability systems, coherent structures, multi-scale statistical modeling, the performance of reliability structures, big data analytics, prognostics, and health management. It covers real-life applications including optimization of telecommunication networks, complex infrared detecting systems, oil pipeline systems, and vacuum systems in accelerators or spacecraft relay stations. The text will serve as an ideal reference book for graduate students and academic researchers in the fields of industrial engineering, manufacturing science, mathematics, and statistics.
Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications (Algorithms for Intelligent Systems)
by K. G. Srinivasa G. M. Siddesh S. R. ManisekharThis book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.
Statistical Modelling of Occupant Behaviour
by Jan Kloppenborg Møller Marcel Schweiker Rune Korsholm Andersen Burak Gunay Selin Yilmaz Verena Marie Barthelmes Henrik MadsenDo you have data on occupant behaviour, indoor environment or energy use in buildings? Are you interested in statistical analysis and modelling? Do you have a specific (research) question and dataset and would like to know how to answer the question with the data available? Statistical Modelling of Occupant Behaviour covers a range of statistical methods and models used for modelling energy- and comfort-related occupant behaviour in buildings. It is a classical textbook on statistics, including many practical examples related to occupant behaviour that are either taken from real research problems or adapted from such. The main focus is traditional statistical techniques based on the likelihood principle that can be applied to occupant behaviour modelling, including: General, generalised linear and survival models Mixed effect and hierarchical models Linear time series and Markov models Linear state space and hidden Markov models Illustration of all methods using occupant behaviour examples implemented in R The built environment affects occupants who live and work in it, and occupants affect the built environment by adapting it to their needs – for example, by adapting their indoor environments by interacting with building components and systems. These adaptive behaviours account for great uncertainty in the prediction of building energy use and indoor environmental conditions. Occupant behaviour is complex and multi-disciplinary but can be successfully modelled using statistical approaches. Statistical Modelling of Occupant Behaviour is written for researchers and advanced practitioners who work with real-world applications and modelling of occupant data. It describes the kinds of statistical models that may be used in various occupant behaviour modelling research. It gives a theoretical overview of these methods and then applies them to the study of occupant behaviour using readily replaceable examples in the R environment that are based on actual and experimental data.
The Statistical Nature of Strength and Lifetime in Polymer Films and Fibers
by Bronya TsoiThis monograph is an updated and extended edition of Strength and Fracture of Polymer Films, which was published in Russian in 1999. It presents the results of long-term theoretical and experimental studies of brittle and quasi-brittle fracture of solid polymers. The principal results of a comprehensive and detailed investigation of the statistical
Statistical Optics (Wiley Series in Pure and Applied Optics)
by Joseph W. GoodmanThis book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of "read noise" to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.
Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs
by Hao Yu Ruijing Shen Sheldon X.-D. TanSince process variation and chip performance uncertainties have become more pronounced as technologies scale down into the nanometer regime, accurate and efficient modeling or characterization of variations from the device to the architecture level have become imperative for the successful design of VLSI chips. This book provides readers with tools for variation-aware design methodologies and computer-aided design (CAD) of VLSI systems, in the presence of process variations at the nanometer scale. It presents the latest developments for modeling and analysis, with a focus on statistical interconnect modeling, statistical parasitic extractions, statistical full-chip leakage and dynamic power analysis considering spatial correlations, statistical analysis and modeling for large global interconnects and analog/mixed-signal circuits. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits;Helps chip designers understand the potential and limitations of their design tools, improving their design productivity;Presents analysis of each algorithm with practical applications in the context of real circuit design;Includes numerical examples for the quantitative analysis and evaluation of algorithms presented. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits;Helps chip designers understand the potential and limitations of their design tools, improving their design productivity;Presents analysis of each algorithm with practical applications in the context of real circuit design;Includes numerical examples for the quantitative analysis and evaluation of algorithms presented.
Statistical Physics of Synchronization (SpringerBriefs in Complexity)
by Shamik Gupta Alessandro Campa Stefano RuffoThis book introduces and discusses the analysis of interacting many-body complex systems exhibiting spontaneous synchronization from the perspective of nonequilibrium statistical physics. While such systems have been mostly studied using dynamical system theory, the book underlines the usefulness of the statistical physics approach to obtain insightful results in a number of representative dynamical settings. Although it is intractable to follow the dynamics of a particular initial condition, statistical physics allows to derive exact analytical results in the limit of an infinite number of interacting units. Chapter one discusses dynamical characterization of individual units of synchronizing systems as well as of their interaction and summarizes the relevant tools of statistical physics. The latter are then used in chapters two and three to discuss respectively synchronizing systems with either a first- or a second-order evolution in time. This book provides a timely introduction to the subject and is meant for the uninitiated as well as for experienced researchers working in areas of nonlinear dynamics and chaos, statistical physics, and complex systems.
Statistical Process Control: A Guide for Implementation (Quality And Reliability Ser. #8)
by Roger W. Berger Thomas H. HartThis guide aims to strip away the mystery surrounding statistical process control and to present its concepts and principles in as simple and straightforward a manner as possible. It is directed primarily at American business managers.
Statistical Process Control: A Pragmatic Approach (Continuous Improvement Series)
by Stephen MundwillerPeople with minimal math skills, and even those with advanced math skills, have difficulty grasping the intuitive concepts behind Statistical Process Control (SPC). Many practitioners do not understand the concepts behind Control Charts, the differences of out of control and out of specification, and the process variation on Control Charts. This book will explain these concepts by using a simple methodology that will bring a much greater level of understanding to those that use it by providing a detailed description of the method, using common language, real-world examples to illustrate the concept, and instructions on easy implementation.
Statistical Process Control
by John S OaklandStatistical Process Control (SPC) is a tool that measures and achieves quality control, providing managers from a wide range of industries with the ability to take appropriate actions for business success. Offering a complete instructional guide to SPC for professional quality managers and students alike, all the latest tools, techniques and philosophies behind process management and improvement are supported by the author’s extensive consulting work with thousands of organisations worldwide. Fully updated to include real-life case studies, new research based on actual client work from an array of industries, a new chapter on process capability, and integration with the latest computer methods and Minitab software, the book also retains its valued textbook quality through clear learning objectives and end of chapter discussion questions. It will serve as a textbook for both student and practicing engineers, scientists, technologists and managers and for anyone wishing to understand or implement modern statistical process control techniques.
Statistical Process Control
by John S Oakland Robert James OaklandThe business, commercial and public-sector world has changed dramatically since John Oakland wrote the first edition of Statistical Process Control – a practical guide?in the mid-eighties. Then people were rediscovering statistical methods of ‘quality control’ and the book responded to an often desperate need to find out about the techniques and use them on data. Pressure over time from organizations supplying directly to the consumer, typically in the automotive and high technology sectors, forced those in charge of the supplying production and service operations to think more about preventing problems than how to find and fix them. Subsequent editions retained the ‘took kit’ approach of the first but included some of the ‘philosophy’ behind the techniques and their use. The theme which runs throughout the 7th edition is still processes - that require understanding, have variation, must be properly controlled, have a capability, and need improvement - the five sections of this new edition. SPC never has been and never will be simply a ‘took kit’ and in this book the authors provide, not only the instructional guide for the tools, but communicate the management practices which have become so vital to success in organizations throughout the world. The book is supported by the authors' extensive and latest consulting work within thousands of organisations worldwide. Fully updated to include real-life case studies, new research based on client work from an array of industries, and integration with the latest computer methods and Minitab software, the book also retains its valued textbook quality through clear learning objectives and end of chapter discussion questions. It can still serve as a textbook for both student and practicing engineers, scientists, technologists, managers and for anyone wishing to understand or implement modern statistical process control techniques.
Statistical Process Control and Data Analytics
by John Oakland Robert OaklandThe business, commercial and public-sector world has changed dramatically since John Oakland wrote the first edition of Statistical Process Control in the mid-1980s. Then, people were rediscovering statistical methods of ‘quality control,’ and the book responded to an often desperate need to find out about the techniques and use them on data. Pressure over time from organizations supplying directly to the consumer, typically in the automotive and high technology sectors, forced those in charge of the supplying, production and service operations to think more about preventing problems than how to find and fix them. Subsequent editions retained the ‘tool kit’ approach of the first but included some of the ‘philosophy’ behind the techniques and their use.Now entitled Statistical Process Control and Data Analytics, this revised and updated eighth edition retains its focus on processes that require understanding, have variation, must be properly controlled, have a capability and need improvement – as reflected in the five sections of the book. In this book the authors provide not only an instructional guide for the tools but communicate the management practices which have become so vital to success in organizations throughout the world. The book is supported by the authors' extensive consulting work with thousands of organizations worldwide. A new chapter on data governance and data analytics reflects the increasing importance of big data in today’s business environment.Fully updated to include real-life case studies, new research based on client work from an array of industries and integration with the latest computer methods and software, the book also retains its valued textbook quality through clear learning objectives and online end-of-chapter discussion questions. It can still serve as a textbook for both student and practicing engineers, scientists, technologists, managers and anyone wishing to understand or implement modern statistical process control techniques and data analytics.