- Table View
- List View
The Physics Companion
by Anthony C. Fischer-CrippsGet Up to Speed on PhysicsUpdated and expanded with new topics, The Physics Companion, 2nd Edition offers a unique and educational approach to learning physics at a level suitable for first-year science students. This new edition expands the presentation to include senior topics, such as statistical mechanics, quantum physics, and nuclear physics.
The Physics and Mathematics of Electroencephalogram
by Dezhong YaoThis book focuses on a systematic introduction to the knowledge of mathematics and physics of electroencephalogram (EEG) and discusses an in-depth application of EEG and the development of new methods and technologies for mining and analyzing EEG.The Physics and Mathematics of Electroencephalogram offers a systematic overview of the technology for brain function and disease. It covers six parts: background knowledge of EEG, EEG forward problems, high-resolution EEG imaging, EEG inverse problems, EEG reference electrode, and EEG cloud platform. The author reviews the critical technologies in brain function and disease, such as EEG sourcing, EEG imaging, and EEG reference electrode standardization technique. The book’s aim is to clarify the mechanism of EEG from the perspective of physics, mathematics, and engineering science to help multidisciplinary readers better understand and use EEG information more effectively.This book can be used as reference for researchers in the fields of neuroengineering, cognitive neuroscience, neurology, psychiatry, applied mathematics, and brain-like intelligence.
The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communication (Wiley - IEEE)
by Tapan K. Sarkar Magdalena Salazar Palma Mohammad Najib AbdallahAn important resource that examines the physical aspects of wireless communications based on mathematical and physical evidence The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationdescribes the electromagnetic principles for designing a cellular wireless system and includes the subtle electromagnetic principles that are often overlooked in designing such a system. This important text explores both the physics and mathematical concepts used in deploying antennas for transmission and reception of electromagnetic signals and examines how to select the proper methodology from a wide range of scenarios. In this much-needed guide, the authors—noted experts in the field—explore the principle of electromagnetics as developed through the Maxwellian principles and describe the properties of an antenna in the frequency domain. The text also includes a review of the characterization of propagation path loss in a cellular wireless environment and examines ultrawideband antennas and the mechanisms of broadband transmission of both power and information. This important resource: Includes a discussion of the shortcomings of a MIMO system from both theoretical and practical aspects Demonstrates how to deploy base station antennas with better efficiency Validates the principle and the theoretical analysis of electromagnetic propagation in cellular wireless communication Contains results of experiments that are solidly grounded in mathematics and physics Written for engineers, researchers, and educators who are or plan to work in the field, The Physics and Mathematics of Electromagnetic Wave Propagation in Cellular Wireless Communicationoffers an essential resource for understanding the principles underpinning wireless communications.
The Physics and Technology of Laser Resonators
by Denis Hall P.E. JacksonComprehensive yet concise, The Physics and Technology of Laser Resonators presents both the fundamentals and latest developments in laser resonator technology, including specific case studies. The book covers various types of resonators, including unstable, ring laser, and multifold laser. It also discusses numerical resonator calculations and laser beam analysis. This reference will be of value and interest both to newcomers to the field and to professional engineers wishing to update their knowledge.
The Physics of Advanced Optical Materials: Tellurite Glasses
by Raouf El-MallawanyThis book focuses on advanced optical properties and applications of tellurite glasses and tellurite glasses doped with rare-earth nanoparticles. The initial chapter presents the current state of the art in tellurite glass development, focusing on those compositions doped with nanoparticles based on rare-earth elements such as neodymium and erbium. The book then discusses various linear and nonlinear optical properties (e.g., refractive index, absorption, optical susceptibility) of these glasses in the visible and ultraviolet spectral regions. Finally, it looks at a selection of recent technological applications of doped tellurite glasses, such as highly efficient laser glass, novel temperature sensors, and advanced optical fiber material. Featuring comprehensive and up-to-date data sets, along with a topical discussion of promising new areas of application, this book is particularly suitable for researchers and industry professionals working in the field of glass manufacturing for optics and laser applications.
The Physics of Computing
by Luca GammaitoniThis book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.
The Physics of Diagnostic Imaging
by David Dowsett Patrick A Kenny R Eugene JohnstonOver recent years there has been a vast expansion in the variety of imaging techniques available, and developments in machine specifications continue apace.
The Physics of Ettore Majorana
by Salvatore EspositoThrough just a handful of papers, Ettore Majorana left an indelible mark in the fields of physics, mathematics, computer science and even economics before his mysterious disappearance in 1938. It is only now that the importance of Majorana's work is being realised: Majorana fermions are intensely studied today, and his work on neutrino physics has provided possible explanations for the existence of dark matter. In this unique volume, Salvatore Esposito explores not only Majorana's known papers but, even more interestingly, unveils his unpublished works as well. These include powerful methods and results, ranging from the atomic two-centre problem, the Thomas-Fermi model and ferromagnetism to quasi-stationary states, n-component relativistic wave equations and quantum scalar electrodynamics. Featuring biographical notes and contributions from leading experts Evgeny Akhmedov and Frank Wilczek, this fascinating book will captivate graduate students and researchers interested in frontier science as well as in the history of science.
The Physics of Ferromagnetism
by Hanmin Jin Terunobu MiyazakiThis book covers both basic physics of ferromagnetism, such as magnetic moment, exchange coupling, magnetic anisotropy, and recent progress in advanced ferromagnetic materials. Special focus is placed on NdFeB permanent magnets and the materials studied in the field of spintronics (explaining the development of tunnel magnetoresistance effect through the so-called giant magnetoresistance effect).
The Physics of Flight: A Primer
by Albert StoraceThe Physics of Flight provides a comprehensive explanatory reference on the basic physics of flight with a clear presentation of the underlying mathematics. It presents a momentum-based explanation of lift making no use of Bernoulli’s theorem. Misconceptions are disproved, such as identifying centrifugal force experienced in an airplane undergoing maneuvers as a fictitious force, and not attributing weightlessness during airplane pitch over or experienced in an airplane performing a parabolic flight path to the effects of free fall. This book places particular emphasis on Newton’s second law of motion to explain the effects of forces acting on an airplane, the mechanism of lift, and the principles of propulsion. This book is intended for undergraduate aviation and aerospace students taking courses in Flight Dynamics, Introduction to Flight, and Physics of Flight.
The Physics of Invisibility
by Martin BeechThe ability is see is fundamental to our very existence. How true our perceptions really are depends upon many factors, and not least is our understanding of what light is and how it interacts with matter. It was said that the camera, the icon of light recording instruments, never lies, and in the day of the glass plate and celluloid roll-film this might well have been true. But in this modern era, with electronic cameras and computer software, it is often safe to assume that the camera always lies. The advertising images that bombard our every waking moment are manipulated in shape, profile, color, and form. In this new era, light can be manipulated with metamaterials to make one object look like another or even cause that objects to vanish, literally before our eyes; not only can the image we see be manipulated, but so can the light itself.
The Physics of Laser Radiation–Matter Interaction: Fundamentals, and Selected Applications in Metrology
by Alexander HornThis textbook explains the fundamental processes involved in the interaction of electromagnetic radiation with matter. It leads students from a general discussion of electrodynamics, forming the mathematical foundation for the Maxwell equations, to key results such as the Fresnel equations, Snell’s law, and the Brewster angle, deriving along the way the equations for accelerated charges and discussing dipole radiation, Bremsstrahlung and synchrotron radiation. By considering more and more interacting particles, the book advances its treatment of the subject, approaching the solid-state regime using both classical and quantum mechanical approaches to describe interaction paths with electromagnetic radiation. Finally, specific interactions of laser radiation with matter are explained such as ultrafast, coherent, and selective interaction. With an emphasis on achieving an intuitive grasp of the basic physics underlying common laser technology, this textbook is ideal for graduate students seeking both a better fundamental and applied understanding of laser–matter interaction.
The Physics of Low-Dimensional Semiconductors
by John H. DaviesThe composition of modern semiconductor heterostructures can be controlled precisely on the atomic scale to create low-dimensional systems. These systems have revolutionised semiconductor physics, and their impact on technology, particularly for semiconductor lasers and ultrafast transistors, is widespread and burgeoning. This book provides an introduction to the general principles that underlie low-dimensional semiconductors. As far as possible, simple physical explanations are used, with reference to examples from actual devices. The author shows how, beginning with fundamental results from quantum mechanics and solid-state physics, a formalism can be developed that describes the properties of low-dimensional semiconductor systems. Among numerous examples, two key systems are studied in detail: the two-dimensional electron gas, employed in field-effect transistors, and the quantum well, whose optical properties find application in lasers and other opto-electronic devices. The book includes many exercises and will be invaluable to undergraduate and first-year graduate physics or electrical engineering students taking courses in low-dimensional systems or heterostructure device physics.
The Physics of Microdroplets
by Ken Brakke Jean BerthierThe Physics of Microdroplets gives the reader the theoretical and numerical tools to understand, explain, calculate, and predict the often nonintuitive observed behavior of droplets in microsystems.<P><P>Microdrops and interfaces are now a common feature in most fluidic microsystems, from biology, to biotechnology, materials science, 3D-microelectronics, optofluidics, and mechatronics. On the other hand, the behavior of droplets and interfaces in today's microsystems is complicated and involves complex 3D geometrical considerations. From a numerical standpoint, the treatment of interfaces separating different immiscible phases is difficult.After a chapter dedicated to the general theory of wetting, this practical book successively details:The theory of 3D liquid interfaces The formulas for volume and surface of sessile and pancake dropletsThe behavior of sessile dropletsThe behavior of droplets between tapered plates and in wedges The behavior of droplets in microchannels The effect of capillarity with the analysis of capillary rise The onset of spontaneous capillary flow in open microfluidic systems The interaction between droplets, like engulfment The theory and application of electrowettingThe state of the art for the approach of 3D-microelectronics using capillary alignment
The Physics of Music and Color
by Leon GuntherThe Physics of Music and Color deals with two subjects, music and color - sound and light in the physically objective sense - in a single volume. The basic underlying physical principles of the two subjects overlap greatly: both music and color are manifestations of wave phenomena, and commonalities exist as to the production, transmission, and detection of sound and light. This book aids readers in studying both subjects, which involve nearly the entire gamut of the fundamental laws of classical as well as modern physics. Where traditional introductory physics and courses are styled so that the basic principles are introduced first and are then applied wherever possible, this book is based on a motivational approach: it introduces a subject by demonstrating a set of related phenomena, challenging readers by calling for a physical basis for what is observed. The Physics of Music and Color is written at level suitable for college students without any scientific background, requiring only simple algebra and a passing familiarity with trigonometry. It contains numerous problems at the end of each chapter that help the reader to fully grasp the subject.
The Physics of Music and Color: Sound and Light
by Leon GuntherThis undergraduate textbook aids readers in studying music and color, which involve nearly the entire gamut of the fundamental laws of classical as well as atomic physics. The objective bases for these two subjects are, respectively, sound and light. Their corresponding underlying physical principles overlap greatly: Both music and color are manifestations of wave phenomena. As a result, commonalities exist as to the production, transmission, and detection of sound and light. Whereas traditional introductory physics textbooks are styled so that the basic principles are introduced first and are then applied, this book is based on a motivational approach: It introduces a subject with a set of related phenomena, challenging readers by calling for a physical basis for what is observed. A novel topic in the first edition and this second edition is a non-mathematical study of electric and magnetic fields and how they provide the basis for the propagation of electromagnetic waves, of light in particular. The book provides details for the calculation of color coordinates and luminosity from the spectral intensity of a beam of light as well as the relationship between these coordinates and the color coordinates of a color monitor. The second edition contains corrections to the first edition, the addition of more than ten new topics, new color figures, as well as more than forty new sample problems and end-of-chapter problems. The most notable additional topics are: the identification of two distinct spectral intensities and how they are related, beats in the sound from a Tibetan bell, AM and FM radio, the spectrogram, the short-time Fourier transform and its relation to the perception of a changing pitch, a detailed analysis of the transmittance of polarized light by a Polaroid sheet, brightness and luminosity, and the mysterious behavior of the photon.The Physics of Music and Color is written at a level suitable for college students without any scientific background, requiring only simple algebra and a passing familiarity with trigonometry. The numerous problems at the end of each chapter help the reader to fully grasp the subject.
The Physics of Music: Integrating the Technical and Artistic Aspects of Creating Music (Undergraduate Lecture Notes in Physics)
by Gordon P. RamseyThis textbook is designed to help students and professionals understand the intimate connection between music and physics. The reader does not need prior background in music or physics, as the concepts necessary for understanding this connection are developed from scratch, using nothing more sophisticated than basic algebra which is reviewed for the reader. The focus is on connecting physics to the creation of music and its effect on humans. The reader will learn about the basic structure of music in relation to acoustics concepts, different musical instrument groups, how the room affects sound, and how sound travels from instruments to human ears to evoke an emotional reaction. Replete with exercises to hone students’ understanding, this book is ideal for a course on the physics of music and will appeal to STEM students as well as students, professionals, and enthusiasts in any field related to music and sound engineering.
The Physics of Nuclear Reactors
by Serge MarguetThis comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety.After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning:• The slowing-down of neutrons in matter• The charged particles and electromagnetic rays• The calculation scheme, especially the simplification hypothesis• The concept of criticality based on chain reactions• The theory of homogeneous and heterogeneous reactors• The problem of self-shielding• The theory of the nuclear reflector, a subject largely ignored in literature• The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
The Physics of Renewable Energy (Graduate Texts in Physics)
by Martin Stutzmann Christoph CsoklichThis book provides a concise overview of the physical basics of different forms of renewable energy (water, waves, wind, solar, thermal, geothermal, biofuels), focusing on the physical limits for the efficiency and energy densities of different current technologies. It also discusses relevant aspects of materials science, physical chemistry, and biophysics. The book is based on the lecture notes of a course taught at TU München to undergraduate and graduate students of Applied Physics and related engineering disciplines. It provides material that can be taught in a one-semester course with 4 hours per week and includes a self-test section to enable students to check their understanding.
The Physics of Semiconductor Devices: Proceedings of IWPSD 2021 (Springer Proceedings in Physics #306)
by Rajendra Singh Madhusudan Singh Ashok KapoorThis book includes proceedings of the 21st International Workshop on Physics of Semiconductor Devices. The workshop is jointly organized by the Indian Institute of Technology, Delhi, and Solid State Physics Laboratory, Delhi, in collaboration with the Society for Semiconductor Devices and Semiconductor Society of India. This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in III-nitrides; materials and devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy, and characterization, graphene, and other 2D materials and organic semiconductors. The research articles included in this book are contributed by various eminent scientists from all over the world. The book serves as a reference resource for researchers and practitioners in academia and industry.
The Physics of Semiconductors
by Marius GrundmannThe 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two-semester course. In the third edition several topics are extended and treated in more depth including surfaces, disordered materials, amorphous semiconductors, polarons, thermopower and noise. More than 1800 references guide the reader to historic and current literature including original and review papers and books.
The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (Graduate Texts in Physics)
by Marius GrundmannThe 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.
The Physics of Solar Energy Conversion: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan BisquertResearch on advanced energy conversion devices such as solar cells has intensified in the last two decades. A broad landscape of candidate materials and devices were discovered and systematically studied for effective solar energy conversion and utilization. New concepts have emerged forming a rather powerful picture embracing the mechanisms and limitation to efficiencies of different types of devices. The Physics of Solar Energy Conversion introduces the main physico-chemical principles that govern the operation of energy devices for energy conversion and storage, with a detailed view of the principles of solar energy conversion using advanced materials. Key Features include: Highlights recent rapid advances with the discovery of perovskite solar cells and their development. Analyzes the properties of organic solar cells, lithium ion batteries, light emitting diodes and the semiconductor materials for hydrogen production by water splitting. Embraces concepts from nanostructured and highly disordered materials to lead halide perovskite solar cells Takes a broad perspective and comprehensively addresses the fundamentals so that the reader can apply these and assess future developments and technologies in the field. Introduces basic techniques and methods for understanding the materials and interfaces that compose operative energy devices such as solar cells and solar fuel converters.
The Physics of Thin Film Optical Spectra
by Olaf StenzelThe book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.
The Physics of Thin Film Optical Spectra: An Introduction (Springer Series in Surface Sciences #74)
by Olaf StenzelThis book serves as a comprehensive guide to the physics of thin-film optical spectra, bridging the gap between fundamental physics courses, such as optics, electrodynamics, quantum mechanics, and solid-state physics, and the highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. It presumes a basic understanding from these courses and builds upon it. Starting from the fundamentals of physics, the book equips the reader with the ability to derive the theory of optical coatings and apply it to significant spectroscopic problems. It encompasses both classical and semiclassical approaches. The topics covered range from classical optical coatings in various spectral regions to more specialized areas such as rugate filters and ultrafast mirrors. The expanded and updated third edition places a stronger emphasis on basic physical modeling aspects and updates the description of nonlinear coating properties. Additionally, it includes an expanded collection of problems with detailed solutions and explanations, enhancing the reader’s understanding and application of the concepts.